All about convolution
Last time: Convolution and cross-correlation

• Cross correlation

\[S[f] = w \otimes f \]
\[S[f](m, n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f(m + i, n + j) \]

• Convolution

\[S[f] = w \ast f \]
\[S[f](m, n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f(m - i, n - j) \]
Cross correlation

Local image data

\[
S[f](m, n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f(m + i, n + j)
\]
Properties: Linearity

\[(w \otimes f)(m, n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f(m + i, n + j)\]

\[f' = af + bg\]

\[w \otimes f' = a(w \otimes f) + b(w \otimes g)\]
Properties: Linearity

\[(w \otimes f)(m, n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f(m + i, n + j)\]

\[w' = aw + bv\]

\[w' \otimes f = a(w \otimes f) + b(v \otimes f)\]
Shift equivariance

\[f'(m, n) = f(m - m_0, n - n_0) \]

\[(w \otimes f')(m, n) = (w \otimes f)(m - m_0, n - n_0)\]

- Shift, then convolve = convolve, then shift
- Output of convolution does not depend on where the pixel is
Boundary conditions

\[(w * f)(m, n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f(m - i, n - j)\]

- What if \(m-i < 0\)?
- What if \(m-i > \) image size
- Assume \(f\) is defined for \([-\infty, \infty]\) in both directions, just 0 everywhere else
- Same for \(w\)

\[(w * f)(m, n) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} w(i, j) f(m - i, n - j)\]
Boundary conditions

<table>
<thead>
<tr>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Boundary conditions

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

```
Boundary conditions
Boundary conditions

<table>
<thead>
<tr>
<th>90</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Boundary conditions
Boundary conditions in practice

- “Full convolution”: compute if any part of kernel intersects with image
  - requires padding
  - Output size = m+k-1
- “Same convolution”: compute if center of kernel is in image
  - requires padding
  - output size = m
- “Valid convolution”: compute only if all of kernel is in image
  - no padding
  - output size = m-k+1
Filters: examples

Original (f) * \frac{1}{9} Kernel (k) = Blur (with a mean filter) (g)

Source: D. Lowe
Filters: examples

Original (f) * Kernel (k) = Identical image (g)

Source: D. Lowe
Sharpening

before

after

Source: D. Lowe
Sharpening

• What does blurring take away?

Let’s add it back:
Sharpening
Sharpening

• What does blurring take away?

Let’s add it back:

\[ \text{original} - \text{detail} + \alpha = \text{sharpened} \]
Sharpening

\[ f_{\text{sharp}} = f + \alpha (f - f_{\text{blur}}) \]

\[ = (1 + \alpha) f - \alpha f_{\text{blur}} \]

\[ = (1 + \alpha)(w * f) - \alpha (v * f) \]

\[ = ((1 + \alpha)w - \alpha v) * f \]
Sharpening filter

Original

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
- \frac{1}{9}
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\]

Sharpening filter (accentuates edges)

Source: D. Lowe
Another example

<table>
<thead>
<tr>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Another example
Another example
More properties of convolution

\[(w \ast f)(m, n) = \sum_i \sum_j w(i, j)f(m - i, n - j)\]

\[= \sum_i \sum_j w(m - i', n - j')f(i, j)\]

\[= (f \ast w)(m, n)\]

\[i' = m - i \Rightarrow i = m - i'\]

\[j' = n - j \Rightarrow j = n - j'\]
More properties of convolution

- Convolution is linear
- Convolution is shift-invariant
- Convolution is commutative \((w*f = f*w)\)
- Convolution is associative \((v*(w*f) = (v*w)*f)\)
- Every linear shift-invariant operation is a convolution
More convolution filters

- Mean filter

  \[
  \begin{array}{cccccc}
  1 & 1 & 1 & 1 & 1 & 1 \\
  1 & 1 & 1 & 1 & 1 & 1 \\
  1 & 1 & 1 & 1 & 1 & 1 \\
  1 & 1 & 1 & 1 & 1 & 1 \\
  1 & 1 & 1 & 1 & 1 & 1 \\
  \end{array}
  \]

- But nearby pixels are more correlated than far-away pixels
- Weigh nearby pixels more
Gaussian filter

\[ G_\sigma(x) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{x^2}{2\sigma^2}} \]

\[ G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \]
Gaussian filter

\[ G_\sigma(x, y) = \frac{1}{2\pi \sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \]

- Ignore factor in front, instead, normalize filter to sum to 1

\[
\begin{array}{cccccc}
0.003 & 0.013 & 0.022 & 0.013 & 0.003 \\
0.013 & 0.060 & 0.098 & 0.060 & 0.013 \\
0.022 & 0.098 & 0.162 & 0.098 & 0.022 \\
0.013 & 0.060 & 0.098 & 0.060 & 0.013 \\
0.003 & 0.013 & 0.022 & 0.013 & 0.003 \\
\end{array}
\]

5x5, \( \sigma=1 \)
Gaussian filter

\[ G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \]

- Ignore factor in front, instead, normalize filter to sum to 1

5x5, \( \sigma=1 \)
Gaussian filter

21x21, $\sigma=0.5$

21x21, $\sigma=1$

21x21, $\sigma=3$
Difference of Gaussians

$21 \times 21, \sigma = 1$

$21 \times 21, \sigma = 3$
Time complexity of convolution

• Image is $w \times h$
• Filter is $k \times k$
• Every entry takes $O(k^2)$ operations
• Number of output entries:
  • $(w+k-1)(h+k-1)$ for full
  • $wh$ for same
• Total time complexity:
  • $O(whk^2)$
Optimization: separable filters

• basic alg. is $O(r^2)$: large filters get expensive fast!
• definition: $w(x,y)$ is *separable* if it can be written as:
  \[ w(i, j) = u(i)v(j) \]
• Write $u$ as a $k \times 1$ filter, and $v$ as a $1 \times k$ filter
• Claim: $w = u \ast v$
Separable filters

\[ u_1 \star v_1 \quad v_2 \quad v_3 \]

\[ u_1 \quad u_2 \quad u_3 \]

\[ u_1 \quad u_2 \quad u_3 \]

\[ u_1 \quad v_1 \quad v_2 \quad v_3 \]

\[ u_1 \quad v_1 \]

\[ u_1 v_1 \]

\[ u_2 \]

\[ u_2 \]

\[ u_2 \]

\[ u_1 \]
Separable filters
Separable filters
Separable filters
Separable filters

\[ u_1 \ast v_1 \ast v_2 \ast v_3 \]

\[ u_1 \quad u_2 \quad u_3 \]

\[ v_1 \quad v_2 \quad v_3 \]

\[ \begin{array}{ccc}
    u_1v_1 & u_1v_2 & u_1v_3 \\
    u_2v_1 & u_2v_2 & \\
    & & \\
\end{array} \]
Separable filters

\[ u_1 \ast v_1 \]

\[ u_2 \]

\[ u_3 \]

\[ v_2 \]

\[ v_3 \]

\[ u_1 \]

\[ u_2 \]

\[ u_3 \]

\[ u_1 \]

\[ u_2 \]

\[ u_3 \]

\[ \begin{array}{ccc}
  u_1v_1 & u_1v_2 & u_1v_3 \\
  u_2v_1 & u_2v_2 & u_2v_3 \\
\end{array} \]
Separable filters

\[
\begin{align*}
  u_1 & \quad * \quad v_1 & \quad v_2 & \quad v_3 \\
  u_2 & \quad & \quad & \\
  u_3 & \quad & \quad & \\
\end{align*}
\]

\[
\begin{array}{ccc}
  u_1v_1 & u_1v_2 & u_1v_3 \\
  u_2v_1 & u_2v_2 & u_2v_3 \\
  u_3v_1 & \\
\end{array}
\]
Separable filters

\[
\begin{array}{ccc}
\text{u}_1 & \ast & \text{v}_1 \\
\text{u}_2 & & \text{v}_2 \\
\text{u}_3 & & \text{v}_3 \\
\end{array}
\]
Separable filters

\[ u_1 \ast v_1 \]

\[ u_2 \]

\[ u_3 \]

\[ v_1 \]

\[ v_2 \]

\[ v_3 \]

\[ w \]

\[
\begin{array}{ccc}
  u_1v_1 & u_1v_2 & u_1v_3 \\
  u_2v_1 & u_2v_2 & u_2v_3 \\
  u_3v_1 & u_3v_2 & u_3v_3 \\
\end{array}
\]
Separable filters

\[ w \ast f = (u \ast v) \ast f \]
\[ = u \ast (v \ast f) \]

• Time complexity of original : \( O(whk^2) \)
• Time complexity of separable version : \( O(whk) \)
Images have structure at various scales