1. How can you use the Harris corner detector as an edge detector? How can you get the edge orientation?

2. Each of the following filters is either a low-pass or a high pass filter. Say which is which:
 (a) \[
 \begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1
 \end{bmatrix}
 \]
 (b) \[
 \begin{bmatrix}
 1 & 2 & 1 \\
 2 & 4 & 2 \\
 1 & 2 & 1
 \end{bmatrix}
 \]
 (c) \[
 \begin{bmatrix}
 1 & 0 & -1
 \end{bmatrix}
 \]
 (d) \[
 \begin{bmatrix}
 -1 & 2 & -1
 \end{bmatrix}
 \]

3. Suppose we are interested in image classification. In the table below, each column is a particular kind of feature vector, and each row is a particular transformation. In the cells of the table, write down if the feature vector on the column is invariant to the transformation on the row.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Bag of words</th>
<th>SIFT</th>
<th>Image flattened as a vector</th>
<th>Image gradients flattened as a vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illumination changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small translations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large translations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Consider a bag-of-words based feature vector and a linear classifier. Recall that for a bag-of-words feature vector, we run k-means on SIFT feature vectors to get cluster centers that form our visual words. How does the \(k \) in this clustering step affect the dimensionality of the feature vector? How does increasing \(k \) affect overfitting?

5. How do the epipoles relate to the fundamental matrix \(F \)? How do they relate to the locations of the camera?

6. Pixels at a larger depth have a _____________ disparity.

7. Object detection is often considered a harder problem than image classification. Write down 3 ways in which this is true.

8. A plane in 3D is given by the equation \(\mathbf{N}^T \mathbf{x} = d \). Under a rotation and translation, the point changes as \(\mathbf{x}' = R \mathbf{x} + t \). How does the equation of the plane change? How does the vanishing line change?

9. Given a set of 3D points and the corresponding 2D image locations, we can get a set of linear equations in the entries of the camera projection matrix \(P \) of the form \(\mathbf{A} \mathbf{p} = 0 \). What additional constraint can be imposed on \(\mathbf{p} \) and why? How is this equation solved? How many equations do we need to solve for \(\mathbf{p} \)?
10. Given multiple images of the same scene with different light sources, which of the following can you estimate?
 (a) Albedo
 (b) Normals
 (c) Absolute depth
 (d) Relative depth

11. Consider a pixel for which the BRDF $\rho(\theta_i, \theta_r) = \cos \theta_i$. Is the color of this pixel dependent on the viewing direction? What is the color of this pixel in terms of the lighting direction \mathbf{L} and the surface normal \mathbf{N}?

12. Which of the following can prevent overfitting? Which can reduce training error?
 (a) Increasing the number of output channels for a convolutional layer.
 (b) Converting a convolutional layer to a fully connected layer.
 (c) Reducing the kernel size of a convolutional layer.
 (d) Replacing a $k \times k$ convolutional layer (with identical number of input and output channels) with two convolutional layers: a $k \times 1$ and a $1 \times k$ respectively.

13. What is the computational cost of running a $k \times k$ convolutional layer with c_{out} filters on a collection of c_{in} feature maps of size $h \times w$? How many feature maps get produced as output?

14. The R-CNN system uses segmentation to generate proposals. Why is this better than simply picking random bounding boxes?