Non-linear classifiers
Neural networks
Linear classifiers on pixels are bad

- Solution 1: Better feature vectors
- Solution 2: Non-linear classifiers
A pipeline for recognition

- Compute image gradients
- Compute SIFT descriptors
- Assign to k-means centers
- Compute histogram
- Linear classifier
- Horse
Linear classifiers on pixels are bad

• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers
Non-linear classifiers

• Suppose we have a feature vector for every image
Non-linear classifiers

• Suppose we have a feature vector for every image
 • Linear classifier
Non-linear classifiers

• Suppose we have a feature vector for every image
 • Linear classifier
 • Nearest neighbor: assign each point the label of the nearest neighbor
Non-linear classifiers

• Suppose we have a feature vector for every image
 • Linear classifier
 • Nearest neighbor: assign each point the label of the nearest neighbor
 • Decision tree: series of if-then-else statements on different features
Non-linear classifiers

• Suppose we have a feature vector for every image
 • Linear classifier
 • Nearest neighbor: assign each point the label of the nearest neighbor
 • Decision tree: series of if-then-else statements on different features
 • Neural networks / multi-layer perceptrons
A pipeline for recognition

- Compute image gradients
- Compute SIFT descriptors
- Assign to k-means centers

Horse

Linear classifier

Compute histogram
Multilayer perceptrons

• Key idea: build complex functions by composing simple functions

• Caveat: simple functions must include non-linearities

• $W(U(Vx)) = (WUV)x$

• Let us start with only two ingredients:
 • *Linear*: $y = Wx + b$
 • *Rectified linear unit (ReLU, also called half-wave rectification)*: $y = \max(x,0)$
The linear function

• \(y = Wx + b \)

• Parameters: \(W, b \)

• Input: \(x \) (column vector, or 1 data point per column)

• Output: \(y \) (column vector or 1 data point per column)

• Hyperparameters:
 • Input dimension = # of rows in \(x \)
 • Output dimension = # of rows in \(y \)
 • \(W \) : outdim x indim
 • \(b \) : outdim x 1
The linear function

- $y = Wx + b$
- Every row of y corresponds to a hyperplane in x space

The case when $d_{in} = 2$. A single row in y plotted for every possible value of x
Multilayer perceptrons

• Key idea: build complex functions by composing simple functions
Multilayer perceptron on images

• An example network for cat vs dog

![Diagram of a multilayer perceptron network for cat vs dog classification. The network consists of a reshape layer, followed by linear layers with ReLU activation functions, ending with a sigmoid output layer. The network takes an input image and outputs the probability of the image being a dog.]
The linear function

- $y = Wx + b$
- How many parameters does a linear function have?

The case when $d_{in} = 2$. A single row in y plotted for every possible value of x.

d_{out} $=$ d_{in}
The linear function for images
Reducing parameter count
Reducing parameter count
Idea 1: local connectivity

- Pixels only related to nearby pixels
Idea 2: Translation invariance

- Pixels only related to nearby pixels
- Weights should not depend on the location of the neighborhood
Linear function + translation invariance = *convolution*

- Local connectivity determines kernel size

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Linear function + translation invariance = convolution

- Local connectivity determines kernel size

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Convolution with multiple filters

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Convolution over multiple channels
Convolution as a primitive
Convolution as a feature detector

- score at \((x,y)\) = dot product (filter, image patch at \((x,y)\))
- Response represents similarity between filter and image patch
Kernel sizes and padding
Kernel sizes and padding

- Valid convolution decreases size by \((k-1)/2\) on each side.
- Pad by \((k-1)/2\).
The convolution unit

• Each convolutional unit takes a collection of feature maps as input, and produces a collection of feature maps as output

• Parameters: Filters (+bias)

• If c_{in} input feature maps and c_{out} output feature maps
 • Each filter is $k \times k \times c_{in}$
 • There are c_{out} such filters

• Other hyperparameters: padding
Invariance to distortions
Invariance to distortions
Invariance to distortions
Invariance to distortions: Pooling
Invariance to distortions:
Subsampling
Convolution subsampling convolution
Convolution subsampling convolution

- Convolution in earlier steps detects more local patterns less resilient to distortion
- Convolution in later steps detects more global patterns more resilient to distortion
- Subsampling allows capture of larger, more invariant patterns
Strided convolution

• Convolution with stride $s = \text{standard convolution} + \text{subsampling by picking 1 value every } s \text{ values}$
• Example: convolution with stride 2 = standard convolution + subsampling by a factor of 2
Convolutional networks
Convolutional networks

Convolutional networks

Convolutional Networks and the Brain

Slide credit: Jitendra Malik
Receptive fields of simple cells (discovered by Hubel & Wiesel)
Convolutional networks

Convolutional networks

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.
Convolutional networks