CS4670/5670: Intro to Computer Vision
Instructor: Bharath Hariharan

Image credit Ross Girshick

Image credit Ira Kemelmacher-Shlizerman
Instructor

• Bharath Hariharan (bharathh@cs.cornell.edu)

• Office hours:
 M/W/Thur: 10:00-11:00 am, or by appointment

• Research interests:
 – Computer vision
 – Machine learning
Today

1. What is computer vision?

2. Course overview
Today

• Readings
 – Szeliski, Chapter 1 (Introduction)
Every image tells a story

• Goal of computer vision: perceive the “story” behind the picture
• But what does “story” mean?
• Depends on what we want to do with it!
Why Computer Vision?
Example 1: Robotics
Why Computer Vision?

Example 1: Robotics

Are you going? Or should I go?

What if I point a lot and flail my arms around?

You go first.

This is confusing.

Wait, maybe you should go.

Let's just sit here and reflect.

http://theoatmeal.com/blog/google_self_driving_car
Why Computer Vision?
Example 2: Internet Vision

Facebook Users Are Uploading 350 Million New Photos Each Day

Cooper Smith Sep. 18, 2013, 8:00 AM 23,351
Why Computer Vision?
Example 3: AR
The goal(s) or computer vision

- What is the image about?
- What objects are in the image?
- Where are they?
- How are they oriented?
- What is the layout of the scene in 3D?
- What is the shape of each object?
Vision is easy for humans
Vision is easy for humans
Vision is easy for humans

- Attneave’s cat
Vision is easy for humans

• Mooney faces
Vision is easy for humans

Surface perception in pictures. Koenderink, van Doorn and Kappers, 1992

Slide credit: Jitendra Malik
Vision is easy for humans

Source: “80 million tiny images” by Torralba, et al.
Vision is easy for humans

Source: “80 million tiny images” by Torralba, et al.
...but not always

Vision is hard: Images are ambiguous
Vision is hard: Objects blend together
Vision is hard: Objects blend together
Vision is hard: Concepts have variance
The many faces of intra-class variance

Viewpoint variation

Illumination

Scale
The many faces of intra-class variance

Shape variation

Occlusion

Background clutter
The many faces of intra-class variation
Vision is hard: Concepts are subtle

Tennessee Warbler

Orange Crowned Warbler

https://www.allaboutbirds.org
Vision is hard: local ambiguity

slide credit: Fei-Fei, Fergus & Torralba
What the input looks like
The “summer vision project”

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system.
The “summer vision project”

Goals - General

The primary goal of the project is to construct a system of programs which will divide a vidisector picture into regions such as likely objects, likely background areas, chaos.

We shall call this part of its operation FIGURE-GROUND analysis.

It will be impossible to do this without considerable analysis of shape and surface properties, so FIGURE-GROUND analysis is really inseparable in practice from the second goal which is REGION DESCRIPTION.

The final goal is OBJECT IDENTIFICATION which will actually name objects by matching them with a vocabulary of known objects.
The big reveal

“... in the 1960s almost no one realized that machine vision was difficult... The common and almost despairing feeling of the early investigators like B.K.P. Horn and T.O. Binford was that practically anything could happen in an image and furthermore that practically everything did."

--- Marr, 1982
Perception is the big problem

Our first foray into Artificial Intelligence was a program that did a credible job of solving problems in college calculus. Armed with that success, we tackled high school algebra; we found, to our surprise, that it was much harder. Attempts at grade school arithmetic provide problems of current research interest. An exploration of the child’s world of blocks proved insurmountable, except under the most rigidly constrained circumstances. It finally dawned on us that the overwhelming majority of what we call intelligence is developed by the end of the first year of life.”

– Marvin Minsky, 1977
Cues to help us

The physics of image formation

Statistics and machine learning
WHERE ARE WE NOW?
Deployed: depth cameras

https://realsense.intel.com/stereo/

Microsoft Kinect
Deployed: depth cameras

Iphone TrueDepth
Deployed: shape capture

The Matrix movies, ESC Entertainment, XYZRGB, NRC

Source: S. Seitz
Deployed: Optical character recognition (OCR)

- If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs
http://www.research.att.com/~yann/

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Automatic check processing

Source: S. Seitz
Deployed: Face detection

- Cameras now detect faces
 - Canon, Sony, Fuji, ...
Established technology: 3D Models of the world

Building Rome in a Day.
Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz and Richard Szeliski.
ICCV, 2009, Kyoto, Japan.
Significant progress: Recognizing objects

Mask R-CNN. Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick. ICCV 2017
Significant progress: Face Recognition
Recognition-based product search
Significant progress: Species recognition

WE'RE PRETTY SURE THIS IS IN THE GENUS MIMULUS.

Monkeyflowers
Mimulus

Here are our top ten species suggestions:

Seep monkeyflower
Mimulus guttatus
- Visually Similar / Seen Nearby

Tiling's Monkeyflower
Mimulus tilingii
- Visually Similar / Seen Nearby

Muskflower
Mimulus moschatus
- Seen Nearby

Brewer's Monkeyflower
Mimulus breviflorus

[iNaturalist]
Challenges: recognizing rare concepts

Aye-Aye
Challenges: recognizing rare concepts
Challenges: recognizing rare concepts
Challenges: Recovering 3D structure from limited views
Challenges: Reasoning

What is going to happen next?
Why is this funny?

The picture above is funny.

Andrej Karpathy
Challenges: Integrating Vision and Action

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, Jitendra Malik
CVPR 2017
Challenges: Other imaging domains

Fig.1: Glioma sub-regions. Shown are image patches with the tumor sub-regions that are annotated in the different modalities (top left) and the final labels for the whole dataset (right). The image patches show from left to right: the whole tumor (yellow) visible in T2-FLAIR (Fig.A), the tumor core (red) visible in T2 (Fig.B), the enhancing tumor structures (light blue) visible in T1Gd, surrounding the cystic/necrotic components of the core (green) (Fig. C). The segmentations are combined to generate the final labels of the tumor sub-regions (Fig.D): edema (yellow), non-enhancing solid core (red), necrotic/cystic core (green), enhancing core (blue). (Figure taken from the BraTS IEEE TMI paper.)
Our Course
Instructor

• Bharath Hariharan (bharathh@cs.cornell.edu)

• Office hours:
 M/W/Thu: 10:00-11:00, or by appointment

• Research interests:
 – Computer vision: Object recognition
 – Machine learning: Deep learning
Important personnel

• TAs:
 – Jimmy Briggs
 – Danlu (Athena) Huang
 – Alvin Zhu
 – Yiwei Ni
 – Karun Singh
 – Zhiqiu (Douglas) Lin
Other administrative details

- **Textbook:**
 Rick Szeliski, *Computer Vision: Algorithms and Applications*
 online at: http://szeliski.org/Book/

- **Course webpage (lectures, assignments, OH):**

- **Announcements/grades via Piazza/CMS**
 [Sign up on piazza](https://cmsx.cornell.edu/)
Course requirements

• Prerequisites—*these are essential!*
 – Data structures
 – A good working knowledge of python programming
 – Linear algebra
 – Calculus (plus basic multivariate calculus)

• Course does *not* assume prior imaging experience
 – computer vision, image processing, graphics, etc.
Course overview (tentative)

1. Low and mid-level vision
 - basic image formation
 - image processing, segmentation

2. Reconstruction
 - cameras, geometry and physics of image formation
 - stereo, structure from motion

3. Recognition
 - primer on machine learning, convolutional networks
 - classification, detection, segmentation
1. Low-level vision

• Basic image processing and image formation

Filtering, edge detection

Image formation
Project: Multiscale pyramids
Project: Grouping and segmentation
2. Reconstruction

- Projective geometry
- Multi-view stereo
- Stereo
- Structure from motion
Project: Feature detection and matching
Project: Stereo and photometric stereo
3. Recognition

Image classification

Object detection

Semantic segmentation

Sources: D. Lowe, L. Fei-Fei

“Cat”

cat

grass
Project: Deep learning for classification
Grading

• One prelim, one final exam
• Rough grade breakdown:
 – Midterm: 15-20%
 – Homeworks: 10-20%
 – Programming projects: 40-50%
 – Final exam: 15-20%
Late policy

• Five free “slip days” will be available for the semester
Academic Integrity

• Homeworks have to be done alone
 – No discussing

• Assignments in pairs
Questions?