Picture credit: Magritte and some computer vision researchers
|
Quick infoInstructor: Bharath HariharanLecture time: Mon. / Wed. / Fri. 1:25pm - 2:10pm Lecture venue: Phillips Hall 101 Piazza TAs:
|
| Date | Topic (with linked notes / slides) | Additional reading | Assignments etc |
|---|---|---|---|
| Jan 24 | Introduction [ppt | pdf] | Szeliski 1 | - |
| Jan 26 | The visual world [ppt | pdf] | Szeliski 2 | - |
| Jan 29 | Image filtering [ppt | pdf] | Szeliski 3.1-3.2 | - |
| Jan 31 | Image filtering and Fourier transforms [ppt | pdf] | Szeliski 3.4 | - |
| Feb 2 | Fourier transforms and resizing and resampling [ppt | pdf] | Szeliski 3.4, 2.3.1 | - |
| Feb 5 | Resizing, resampling and pyramids [ppt | pdf] | Szeliski 3.5, 2.3.1 | - |
| Feb 7 | Grouping I - Edge detection [ppt | pdf] | Szeliski 3.5, 4.2 | - |
| Feb 9 | Numpy / scipy tutorial [ppt | pdf] | - | - |
| Feb 12 | Grouping II - Edge detection and k-means [ppt | pdf] | Szeliski 4.1, 5.3 | - |
| Feb 14 | Grouping III - Images as graphs[ppt | pdf] | Szeliski 5.3 | PA1 due |
| Feb 16 | Grouping IV | The correspondence problem [ppt | pdf] | - | - |
| Feb 19 | February break | - | - |
| Feb 21 | Feature detection [ppt | pdf] | Szeliski 4.1 | - |
| Feb 23 | Harris corner detector [ppt | pdf] | Szeliski 4.1 | - |
| Feb 26 | Feature descriptors and matching - I [ppt | pdf] | Szeliski 4.1 | - |
| Feb 28 | Feature descriptors and matching - II [ppt | pdf] | Szeliski 4.1 | - |
| Mar 2 | --Snow day-- | Szeliski 2.1 | - |
| Mar 5 | Feature descriptors and matching - III | Geometry of image formation - I [ppt | pdf] | Szeliski 2.1 | - |
| Mar 7 | Geometry of image formation - II [ppt | pdf] | Szeliski 2.1 | - |
| Mar 9 | Homogenous coordinates | Camera calibration - I [ppt | pdf] | Szeliski 2.1, 6.1, 6.2 | - |
| Mar 12 | Prelim review | - | - |
| Mar 14 | Camera calibration - II | Triangulation [ppt | pdf] | - | - |
| Mar 16 | Homographies | RANSAC [ppt | pdf] | Szeliski 6.1 | - |
| Mar 19 | RANSAC and Hough transforms [ppt | pdf] | Szeliski 6.1 | PA3 out |
| Mar 21 | Prelim Discussion | Two-view stereo - I [ppt | pdf] | Szeliski 7.2 | - |
| Mar 23 | Two-view stereo [ppt | pdf] | Szeliski 7.2 | - |
| Mar 26 | Epipolar geometry [ppt | pdf] | Szeliski 7.1-7.4 | - |
| Mar 28 | Epipolar geometry - II [ppt | pdf] | Szeliski 7.1-7.4 | - |
| Mar 30 | Radiometry [ppt | pdf] | Szeliski 2.2 | PA3 due |
| Apr 2 | Spring break | - | - |
| Apr 4 | Spring break | - | - |
| Apr 6 | Spring break | - | - |
| Apr 9 | Photometric stereo - I [ppt | pdf] | Szeliski 12.1.1 | - |
| Apr 11 | Photometric stereo - II [ppt | pdf] | Szeliski 12.1.1 Practice questions for stereo |
- |
| Apr 13 | Photometric stereo - III | Intro to recognition [ppt | pdf] | - | - |
| Apr 16 | Intro to machine learning - optimization | the ERM principle [ppt | pdf] | - | - |
| Apr 18 | Machine learning and optimization | the ERM principle [ppt | pdf] | Answers for stereo practice questions Practice questions for photometric stereo |
- |
| Apr 20 | Regularization | Linear classifiers and HOG / SIFT Bag-of-words [ppt | pdf] | - | - |
| Apr 23 | Non-linear classifiers [ppt | pdf] | - | - |
| Apr 25 | Convolutional networks | Backpropagation [ppt|pdf] | Answers for photometric stereo practice questions Practice questions for learning / Bag-of-words |
- |
| Apr 27 | Backpropagation [ppt|pdf] | - | - |
| Apr 30 | Image classification | transfer learning [ppt|pdf] | - | - |
| May 2 | Transfer learning | Object detection - I [ppt|pdf] | - | - |
| May 4 | Object detection - II [ppt | pdf] | - | - |
| May 7 | Object detection - III | Semantic segmentation [ppt | pdf] | - | - |
| May 9 | Conclusion |
Practice questions for learning / Bag-of-words
More practice questions Answers to more practice questions |
- |