Lecture 39: Training Neural Networks (Cont’d)

CS 4670/5670
Sean Bell

Strawberry Goblet Throne
(Side Note for PA5) AlexNet: 1 vs 2 parts

Caffe represents caffe like the above image, but computes as if it were the bottom image using 2 “groups”
(Recall) Each iteration of training

(1) Forward Propagation:

\[x \xrightarrow{\text{Function}} h \xrightarrow{\cdots} s \xrightarrow{\text{Function}} L \]

(2) Backward Propagation:

\[\frac{\partial L}{\partial x} \xleftarrow{\text{Function}} \quad \frac{\partial L}{\partial h} \xleftarrow{\cdots} \quad \frac{\partial L}{\partial s} \xleftarrow{\text{Function}} \]

(3) Weight update:

\[\theta \leftarrow \theta - \lambda \frac{\partial L}{\partial \theta} \]
(Recall) Babysitting the training process

Typical loss
(Recall) Babysitting the training process

![Graph showing loss over time with a note about bad initialization being a prime suspect.](image)

Figure: Andrej Karpathy
Weight Initialization

For deep nets, initialization is subtle and important:

Initialize weights to be smaller if there are more input connections:

\[W = \text{np.random.randn}(n) \times \sqrt{2.0 / n} \]

For neural nets with ReLU, this will ensure all activations have the same variance

Initialization matters

Training can take much longer if not carefully initialized:

22 layer model
30 layer model

Proper initialization is an active area of research

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

...
(Recall) Regularization reduces overfitting

\[L = L_{\text{data}} + L_{\text{reg}} \]

\[L_{\text{reg}} = \lambda \frac{1}{2} ||W||_2^2 \]

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]
Example Regularizers

L2 regularization

\[L_{\text{reg}} = \lambda \frac{1}{2} \|W\|_2^2 \]

(L2 regularization encourages small weights)

L1 regularization

\[L_{\text{reg}} = \lambda \|W\|_1 = \lambda \sum_{ij} |W_{ij}| \]

(L1 regularization encourages sparse weights: weights are encouraged to reduce to exactly zero)

“Elastic net”

\[L_{\text{reg}} = \lambda_1 \|W\|_1 + \lambda_2 \|W\|_2^2 \]

(combine L1 and L2 regularization)

Max norm

Clamp weights to some max norm

\[\|W\|_2^2 \leq c \]
"Weight decay"

Regularization is also called "weight decay" because the weights "decay" each iteration:

\[L_{\text{reg}} = \lambda \frac{1}{2} ||W||^2 \quad \leftrightarrow \quad \frac{\partial L}{\partial W} = \lambda W \]

Gradient descent step:

\[W \leftarrow W - \alpha \lambda W - \frac{\partial L_{\text{data}}}{\partial W} \]

Weight decay: \(\alpha \lambda \) (weights always decay by this amount)

Note: biases are sometimes excluded from regularization

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]
Dropout

Simple but powerful technique to reduce overfitting:

Dropout

Simple but powerful technique to reduce overfitting:

[Figure showing the comparison between models with and without dropout]

Dropout

Simple but powerful technique to reduce overfitting:

Note: Dropout can be interpreted as an approximation to taking the geometric mean of an ensemble of exponentially many models

Dropout

How much dropout? Around $p = 0.5$

(a) Keeping n fixed.

(b) Keeping pn fixed.

Dropout

Case study: [Krizhevsky 2012]

“Without dropout, our network exhibits substantial overfitting.”

[Barlow et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012]
Dropout

Dropout is a regularization technique that involves randomly setting input units to a neural network to 0 at test time with a certain probability. This prevents overfitting by reducing the reliance on any single input feature.

```python
p = 0.5  # probability of keeping a unit active. higher = less dropout

def train_step(X):
    """ X contains the data """

    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np.random.rand(*H1.shape) < p  # first dropout mask
    H1 *= U1  # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = np.random.rand(*H2.shape) < p  # second dropout mask
    H2 *= U2  # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout

(note, here X is a single input)

Figure: Andrej Karpathy
Dropout

Test time: scale the activations

Expected value of a neuron h with dropout:

$$E[h] = ph + (1 - p)0 = ph$$

```python
def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p  # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p  # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

We want to keep the same expected value

Figure: Andrej Karpathy
Batch Normalization

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

this is a vanilla differentiable function...

And then allow the network to squash the range if it wants to:

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$
Batch Normalization

Input: Values of x over a mini-batch: $B = \{x_1...m\}$; Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

\[
\begin{align*}
\mu_B & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad // \text{mini-batch mean} \\
\sigma_B^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad // \text{mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad // \text{normalize} \\
y_i & \leftarrow \gamma\hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad // \text{scale and shift}
\end{align*}
\]

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe

[IOFFE AND SZEGEDY, 2015]
Batch Normalization

Input: Values of \(x \) over a mini-batch: \(B = \{x_1 \ldots m\} \); Parameters to be learned: \(\gamma, \beta \)

Output: \(\{y_i = \text{BN}_{\gamma,\beta}(x_i)\} \)

\[
\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad // \text{mini-batch mean}
\]

\[
\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad // \text{mini-batch variance}
\]

\[
\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad // \text{normalize}
\]

\[
y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad // \text{scale and shift}
\]

Note: at test time BatchNorm layer functions differently:

The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations during training is used.

(e.g. can be estimated during training with running averages)
Batch Normalization

Place after a FC or Convolutional layer, and before nonlinearity

[ioffe and Szegedy, 2015]
Transfer Learning ("fine-tuning")

1. Train on ImageNet

ImageNet data

2. Finetune network on your own data

your data
Transfer Learning ("fine-tuning")

This is not just a special trick; this is "the" method used by most papers
Transfer Learning ("fine-tuning")

E.g. Caffe Model Zoo: Lots of pretrained ConvNets
https://github.com/BVLC/caffe/wiki/Model-Zoo

Slide: Andrej Karpathy
Summary

- Preprocess the data (subtract mean, sub-crops)
- Initialize weights carefully
- Use Dropout and/or Batch Normalization
- Use SGD + Momentum
- Fine-tune from ImageNet
- Babysit the network as it trains
You are now ready.
You are now ready.
You are now ready.