Lecture 37: ConvNets (Cont’d) and Training

CS 4670/5670
Sean Bell

(Unrelated) Dog vs Food
(Unrelated) Dog vs Food

[Karen Zack, @teenybiscuit]
(Unrelated) Dog vs Food

[Karen Zack, @teenybiscuit]
(Recap) Backprop
From Geoff Hinton’s seminar at Stanford yesterday

How to learn many layers of features (~1985)

Back-propagate error signal to get derivatives for learning

Compare outputs with correct answer to get error signal

outputs

hidden layers

input vector
(Recap) Backprop

Parameters: \[\theta = \begin{bmatrix} \theta_1 & \theta_2 & \cdots \end{bmatrix} \]

All of the weights and biases in the network, stacked together

Gradient: \[\frac{\partial L}{\partial \theta} = \begin{bmatrix} \frac{\partial L}{\partial \theta_1} & \frac{\partial L}{\partial \theta_2} & \cdots \end{bmatrix} \]

Intuition: “How fast would the error change if I change myself by a little bit”
(Recap) Backprop

Forward Propagation: compute the activations and loss

\[x \rightarrow \theta^{(1)} \rightarrow h^{(1)} \rightarrow \ldots \rightarrow \theta^{(n)} \rightarrow s \rightarrow L \]

Backward Propagation: compute the gradient (“error signal”)

\[\frac{\partial L}{\partial x} \leftarrow \frac{\partial L}{\partial \theta^{(1)}} \leftarrow \frac{\partial L}{\partial h^{(1)}} \leftarrow \ldots \leftarrow \frac{\partial L}{\partial \theta^{(n)}} \leftarrow \frac{\partial L}{\partial s} \leftarrow L \]
(Recap)

A **ConvNet** is a sequence of convolutional layers, interspersed with activation functions (and possibly other layer types).
(Recap)

Convolution Layer

32x32x3 image

32 height
32 width
3 depth
(Recap)

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
(Recap)

Convolution Layer

32x32x3 image

5x5x3 filter

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
Convolution Layer

32x32x3 image
5x5x3 filter w

1 number:
the result of taking a dot product between the filter and a small 5x5x3 chunk of the image
(i.e. $5 \times 5 \times 3 = 75$-dimensional dot product + bias)

$$w^T x + b$$
(Recap)

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map
(Recap)

Convolution Layer

consider a second, green filter

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation maps
(Recap)

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
Web demo 1: Convolution

http://cs231n.github.io/convolutional-networks/

[Karpathy 2016]
Web demo 2: ConvNet in a Browser

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

[Karpathy 2014]
Convolution: Stride

During convolution, the weights “slide” along the input to generate each output.
Convolution: Stride

During convolution, the weights “slide” along the input to generate each output.
Convolution: Stride

During convolution, the weights “slide” along the input to generate each output.
Convolution: Stride

During convolution, the weights “slide” along the input to generate each output.
Convolution: Stride

During convolution, the weights “slide” along the input to generate each output.
Convolution: Stride

During convolution, the weights “slide” along the input to generate each output.
Convolution: Stride

During convolution, the weights “slide” along the input to generate each output.

Recall that at each position, we are doing a 3D sum:

\[h^r = \sum_{ijk} x^r_{ijk} W_{ijk} + b \]

(channel, row, column)
Convolution: Stride

But we can also convolve with a **stride**, e.g. stride = 2
Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2.
Convolution: Stride

But we can also convolve with a **stride**, e.g. stride = 2
Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

- Notice that with certain strides, we may not be able to cover all of the input
- The output is also half the size of the input
Convolution: Padding

We can also pad the input with zeros. Here, $\text{pad} = 1$, $\text{stride} = 2$
Convolution: Padding

We can also pad the input with zeros. Here, \textbf{pad} = 1, \textbf{stride} = 2
Convolution: Padding

We can also pad the input with zeros. Here, \textbf{pad = 1, stride = 2}

\begin{align*}
\text{Input} & \\
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array} \\
\text{Output} & \\
\begin{array}{c}
\end{array}
\end{align*}
Convolution: Padding

We can also pad the input with zeros.
Here, \(\text{pad} = 1, \text{stride} = 2 \)
Convolution:
How big is the output?

In general, the output has size:

$$w_{out} = \left\lfloor \frac{w_{in} + 2p - k}{s} \right\rfloor + 1$$
Convolution: How big is the output?

Example: $k=3$, $s=1$, $p=1$

\[
\begin{align*}
\text{width } w_{in} &= \left\lfloor \frac{w_{in} + 2p - k}{s} \right\rfloor + 1 \\
&= \left\lfloor \frac{w_{in} + 2 - 3}{1} \right\rfloor + 1 \\
&= w_{in}
\end{align*}
\]

VGGNet [Simonyan 2014] uses filters of this shape.
Pooling

For most ConvNets, **convolution** is often followed by **pooling**:
- Creates a smaller representation while retaining the most important information
- The “max” operation is the most common
- Why might “avg” be a poor choice?

Figure: Andrej Karpathy
Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently:

![Diagram showing pooling process]
Max Pooling

What’s the backprop rule for max pooling?

- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index

Figure: Andrej Karpathy
Example ConvNet

Figure: Andrej Karpathy
Example ConvNet

CONV CONV POOL CONV CONV POOL CONV CONV POOL
 ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU

Figure: Andrej Karpathy
Example ConvNet

Figure: Andrej Karpathy
Example ConvNet

- 10x3x3 conv filters, stride 1, pad 1
- 2x2 pool filters, stride 2

Figure: Andrej Karpathy
Example: AlexNet [Krizhevsky 2012]

- conv1
- conv2
- conv3
- conv4
- conv5
- fc6
- fc7

Extract high level features

Classify each sample

“max”: max pooling
“norm”: local response normalization
“full”: fully connected

Figure: [Karnowski 2015] (with corrections)
Example: AlexNet [Krizhevsky 2012]
Questions?
How do you actually train these things?

... why so many layers?

[Network in network]

[We need to go deeper]

[Szegedy et al, 2014]
How do you actually train these things?

Roughly speaking:

- Gather labeled data
- Find a ConvNet architecture
- Minimize the loss
Training a convolutional neural network

- Split and preprocess your data
- Choose your network architecture
- Initialize the weights
- Find a learning rate and regularization strength
- Minimize the loss and monitor progress
- Fiddle with knobs
Mini-batch Gradient Descent

Loop:

1. Sample a batch of training data (~100 images)
2. Forwards pass: compute loss (avg. over batch)
3. Backwards pass: compute gradient
4. Update all parameters

Note: usually called “stochastic gradient descent” even though SGD has a batch size of 1
Regularization reduces overfitting:

\[L = L_{\text{data}} + L_{\text{reg}} \]

\[L_{\text{reg}} = \lambda \frac{1}{2} ||W||^2 \]
Overfitting

Overfitting: modeling noise in the training set instead of the “true” underlying relationship

Underfitting: insufficiently modeling the relationship in the training set

General rule: models that are “bigger” or have more capacity are more likely to overfit

(0) Dataset split

Split your data into “train”, “validation”, and “test”:
(0) Dataset split

Train: gradient descent and fine-tuning of parameters

Validation: determining hyper-parameters (learning rate, regularization strength, etc) and picking an architecture

Test: estimate real-world performance (e.g. accuracy = fraction correctly classified)
(0) Dataset split

Be careful with false discovery:

To avoid false discovery, once we have used a test set once, we should *not use it again* (but nobody follows this rule, since it’s expensive to collect datasets)

Instead, try and avoid looking at the test score until the end
(0) Dataset split

Cross-validation: cycle which data is used as validation

- Train
- Val
- Test

Average scores across validation splits
(1) Data preprocessing

Preprocess the data so that learning is better conditioned:

```python
X -= np.mean(axis=0, keepdims=True)
X /= np.std(axis=0, keepdims=True)
```

Figure: Andrej Karpathy
(1) Data preprocessing

In practice, you may also see **PCA** and **Whitening** of the data:
(1) Data preprocessing

For ConvNets, typically only the mean is subtracted.

A per-channel mean also works (one value per R,G,B).

Figure: Alex Krizhevsky
(1) Data preprocessing

Augment the data — extract random crops from the input, with slightly jittered offsets. Without this, typical ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches extracted from 256x256 images

Randomly reflect horizontally

Perform the augmentation live during training

Figure: Alex Krizhevsky