Lecture 18: Cameras

Source: S. Lazebnik
Announcements

• Prelim next Thu
 – Everything till Monday
Where are we?

• Imaging: pixels, features, ...

• Scenes: geometry, material, lighting

• Recognition: people, objects, ...
Reading

• Szeliski 2.1.3-2.1.6
Panoramas

• Now we know how to create panoramas!

• Given two images:
 – Step 1: Detect features
 – Step 2: Match features
 – Step 3: Compute a homography using RANSAC
 – Step 4: Combine the images together (somehow)

• What if we have more than two images?
Can we use homographies to create a 360 panorama?

- To figure this out, we need to learn what a camera is
360 panorama
Let’s design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?
• Add a barrier to block off most of the rays
 – This reduces blurring
 – The opening known as the **aperture**
 – How does this transform the image?
Camera Obscura

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Source: A. Efros
Camera Obscura
Pinhole photography

6-month exposure
Shrinking the aperture

• Why not make the aperture as small as possible?
 • Less light gets through
 • Diffraction effects...
Shrinking the aperture
Adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are “in focus”
 - other points project to a “circle of confusion” in the image
 - Changing the shape of the lens changes this distance
Lenses

- A lens focuses parallel rays onto a single focal point
 - focal point at a distance \(f \) beyond the plane of the lens (the \textit{focal length})
 - \(f \) is a function of the shape and index of refraction of the lens
 - Aperture restricts the range of rays
 - aperture may be on either side of the lens
 - Lenses are typically spherical (easier to produce)
The human eye is a camera

- **Iris** - colored annulus with radial muscles
- **Pupil** - the hole (aperture) whose size is controlled by the iris
 - What’s the “film”?
 - photoreceptor cells (rods and cones) in the **retina**
Top row: 1 Bengal tiger. 2 Asian elephant. 3 Zebra. 4 Chimpanzee. 5 Flamingo.
Second row: 1 Domestic cat. 2 Hairless sphynx cat. 3 Grey wolf. 4 Booted eagle. 5 Iguana.
Third row: 1 Macaw. 2 Jaguar. 3 Rabbit. 4 Cheetah 5 Horse.
Fourth row: 1 Lioness. 2 Bearded dragon (a type of lizard). 3 Leaf-tailed gecko. 4 Macaroni penguin. 5 Alligator.
Fifth row: 1 Great horned owl. 2 Mountain lion. 3 Boa constrictor. 4 Pufferfish. 5 African crested crane.
Eyes in nature: eyespots to pinhole

http://upload.wikimedia.org/wikipedia/commons/6/6d/Mantis_shrimp.jpg
Projection
Projection
Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html
Modeling projection

- The coordinate system
 - We will use the pinhole model as an approximation
 - Put the optical center (Center Of Projection) at the origin
 - Put the image plane (Projection Plane) in front of the COP
 - Why?
 - The camera looks down the negative z axis
 - we need this if we want right-handed-coordinates
Modeling projection

- **Projection equations**
 - Compute intersection with PP of ray from \((x,y,z)\) to COP
 - Derived using similar triangles (on board)
 \[
 (x, y, z) \rightarrow (-d \frac{x}{z}, -d \frac{y}{z}, -d)
 \]
 - The screen-space or image-plane projection is therefore:
 \[
 (-d \frac{x}{z}, -d \frac{y}{z})
 \]
Modeling projection

- Is this a linear transformation?
- no—division by z is nonlinear

\[
(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]

\[
(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

Converting \textit{from} homogeneous coordinates

\[
\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)
\]

\[
\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)
\]
Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1/d & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
-z/d \\
1
\end{bmatrix}
\Rightarrow \left(-d\frac{x}{z}, -d\frac{y}{z}\right)
\]

divide by third coordinate

This is known as **perspective projection**

- The matrix is the **projection matrix**

- (Can also represent as a 4x4 matrix – OpenGL does something like this)
Perspective Projection

• How does scaling the projection matrix change the transformation?

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1/d & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
-z/d \\
1
\end{bmatrix}
\Rightarrow \left(-\frac{dx}{z}, \ -\frac{dy}{z}\right)
\]

\[
\begin{bmatrix}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
-dx \\
-dy \\
z \\
1
\end{bmatrix}
\Rightarrow \left(-\frac{dx}{z}, \ -\frac{dy}{z}\right)
\]
Orthographic projection

• Special case of perspective projection
 – Distance from the COP to the PP is infinite

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\Rightarrow (x, y)
Dimensionality Reduction Machine (3D to 2D)

What have we lost?
- Angles
- Distances (lengths)

Slide by A. Efros
Figures © Stephen E. Palmer, 2002
Projection properties

• Many-to-one: any points along same ray map to same point in image
• Points \rightarrow points
• Lines \rightarrow lines (collinearity is preserved)
 – But line through focal point projects to a point
• Planes \rightarrow planes (or half-planes)
 – But plane through focal point projects to line
Projection properties

- Parallel lines converge at a vanishing point
 - Each direction in space has its own vanishing point
 - But parallels parallel to the image plane remain parallel
Orthographic projection
Perspective projection
Camera parameters

• How many numbers do we need to describe a camera?

• We need to describe its pose in the world

• We need to describe its internal parameters
A Tale of Two Coordinate Systems

Two important coordinate systems:
1. *World* coordinate system
2. *Camera* coordinate system

"The World"
Camera parameters

• To project a point \((x,y,z)\) in \textit{world} coordinates into a camera
• First transform \((x,y,z)\) into \textit{camera} coordinates
• Need to know
 – Camera position (in world coordinates)
 – Camera orientation (in world coordinates)
• Then project into the image plane
 – Need to know camera \textit{intrinsics}
• These can all be described with matrices
Camera parameters

Projection equation

\[
\begin{bmatrix}
sx \\ sy \\ s
\end{bmatrix} = \begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
1
\end{bmatrix} \begin{bmatrix}
X \\ Y \\ Z \\ 1
\end{bmatrix} = \Pi X
\]

- The projection matrix models the cumulative effect of all parameters
Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$X = \begin{bmatrix} s_x \\ s_y \\ s \\ 1 \end{bmatrix} \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \Pi X$$

- The projection matrix models the cumulative effect of all parameters
Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called “extrinsics,” red are “intrinsics”

Projection equation

$$
X = \begin{bmatrix}
 sx \\
 sy \\
 s \\
\end{bmatrix}
= \begin{bmatrix}
 * & * & * \\
 * & * & * \\
 * & * & * \\
\end{bmatrix}
\begin{bmatrix}
 X \\
 Y \\
 Z \\
\end{bmatrix}
= \Pi X
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$
\Pi = \begin{bmatrix}
 -fs_x & 0 & x'_c \\
 0 & -fs_y & y'_c \\
 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 R_{3 \times 3} & 0_{3 \times 1} \\
 0_{1 \times 3} & 1 \\
 0_{1 \times 3} & 1 \\
\end{bmatrix}
$$

- The definitions of these parameters are **not** completely standardized
 - especially intrinsics—varies from one book to another
Projection matrix

\[
\Pi_q
\]

(in homogeneous image coordinates)
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)
Affine change of coordinates

- Coordinate frame: point plus basis
- Need to change representation of point from one basis to another
- Canonical: origin (0,0) w/ axes e1, e2
Another way of thinking about this

- Change of coordinates

Recap from 4620
Coordinate frame summary

• Frame = point plus basis
• Frame matrix (frame-to-canonical) is

\[
F = \begin{bmatrix}
u & v & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

• Move points to and from frame by multiplying with \(F \)

\[
p_e = Fp_F \quad p_F = F^{-1}p_e
\]
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by \(-c\)
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by \(-c\)

\[
T = \begin{bmatrix}
1_{3 \times 3} & -c \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by \(-c\)
Step 2: Rotate by \(R\)

3x3 rotation matrix

\[
R = \begin{bmatrix}
u^T \\
v^T \\
w^T
\end{bmatrix}
\]
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

For any rotation matrix R acting on \mathbb{R}^n,

\[R^T = R^{-1} \] (The rotation is an orthogonal matrix)

Step 1: Translate by $-c$
Step 2: Rotate by R

\[
R = \begin{bmatrix}
 u^T \\
 v^T \\
 w^T
\end{bmatrix}
\]
Perspective projection

\[
\begin{bmatrix}
 -f & 0 & 0 \\
 0 & -f & 0 \\
 0 & 0 & 1
\end{bmatrix}
\quad \quad
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix}
\]

\(K \) (intrinsics) (converts from 3D rays in camera coordinate system to pixel coordinates)

\[
(x, y, z) \rightarrow (-d \frac{x}{z}, -d \frac{y}{z}, -d)
\]
Perspective projection

\[
\begin{bmatrix}
-f & 0 & 0 \\
0 & -f & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

\(K\) (intrinsics) (converts from 3D rays in camera coordinate system to pixel coordinates)

in general, \(K = \begin{bmatrix}
-f & s & c_x \\
0 & -\alpha f & c_y \\
0 & 0 & 1
\end{bmatrix}\) (upper triangular matrix)

\(\alpha\) : aspect ratio (1 unless pixels are not square)

\(S\) : skew (0 unless pixels are shaped like rhombi/parallelograms)

\((c_x, c_y)\) : principal point ((0,0) unless optical axis doesn’t intersect projection plane at origin)
\[\Pi = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I_{3 \times 3} & -c \\ 0 & 0 & 0 & 1 \end{bmatrix} \]