Lecture 7: Resampling and Edge Detection
Announcements

• PA1-A is out
 – Written part alone
 – Coding part in pairs

• My office hours moved
 – Dhruv has hours from 3-4
SuperBowl

• Lines on the field
Template matching

• Goal: find 🕯️ in image

• Main challenge: What is a good similarity or distance measure between two patches?
 – Sum Square Difference
 – Normalized Cross Correlation
Matching with filters

• Goal: find eye in image

• Method: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m + k, n + l])^2$$

$$f = \text{image}$$
$$g = \text{filter}$$
Matching with filters

• Goal: find in image

• Method: SSD

\[h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2 \]

What’s the potential downside of SSD?
Matching with filters

- **Goal:** find in image
- **Method:** Normalized cross-correlation

\[
\begin{align*}
 h[m, n] &= \frac{\sum_{k,l} (g[k,l] - \bar{g})(f[m-k,n-l] - \bar{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \bar{g})^2 \sum_{k,l} (f[m-k,n-l] - \bar{f}_{m,n})^2\right)^{0.5}}
\end{align*}
\]
Matching with filters

• Goal: find 🕳️ in image
• Method: Normalized cross-correlation
Matching with filters

- Goal: find ☁ in image
- Method: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

True detections
Q: What is the best method to use?

A: Depends

- SSD: faster, sensitive to overall intensity
- Normalized cross-correlation: slower, invariant to local average intensity and contrast
- But really, neither of these baselines are representative of modern recognition
Q: What if we want to find larger or smaller eyes?

A: Image Pyramid
Review of Sampling

Image \rightarrow \text{Gaussian Filter} \rightarrow \text{Low-Pass Filtered Image} \rightarrow \text{Sample} \rightarrow \text{Low-Res Image}
Template Matching with Image Pyramids

Input: Image, Template

1. Match template at current scale
2. Downsample image
3. Repeat 1-2 until image is very small
4. Take responses above some threshold, perhaps with non-maxima suppression
Image representation

• Pixels: great for spatial resolution, poor access to frequency

• Fourier transform: great for frequency, not for spatial info

• Pyramids/filter banks: balance between spatial and frequency information
Major uses of image pyramids

- Compression
- Object detection
 - Scale search
 - Features
- Detecting stable interest points
- Registration
 - Course-to-fine
Upsampling

• This image is too small for this screen:
• How can we make it 10 times as big?
• Simplest approach:
 repeat each row
 and column 10 times
• (“Nearest neighbor interpolation”)

• How can we make it 10 times as big?
• Simplest approach:
 repeat each row
 and column 10 times
• (“Nearest neighbor interpolation”)
Recall how a digital image is formed

\[F[x, y] = \text{quantize}\{f(xd, yd)\} \]

• It is a discrete point-sampling of a continuous function
• If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Adapted from: S. Seitz
Image interpolation

Recall how a digital image is formed

\[
F[x, y] = \text{quantize}\{f(xd, yd)\}
\]

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Adapted from: S. Seitz
Image interpolation

\[F[x] \]

\[h \]

\[1 \]

\[1 \quad 2 \quad 2.5 \quad 3 \quad 4 \quad 5 \]

\[x \]

- What if we don’t know \(f \)?
 - Guess an approximation: \(\tilde{f} \)
 - Can be done in a principled way: filtering
 - Convert \(F \) to a continuous function:
 \[f_F(x) = F \left(\frac{x}{d} \right) \text{ when } \frac{x}{d} \text{ is an integer, 0 otherwise} \]
 - Reconstruct by convolution with a reconstruction filter, \(h \)
 \[\tilde{f} = h \ast f_F \]

Adapted from: S. Seitz
Image interpolation

- sinc(x) → “Ideal” reconstruction
- \(\Pi(x) \) → Nearest-neighbor interpolation
- \(\Lambda(x) \) → Linear interpolation
- gauss(x) → Gaussian reconstruction

Source: B. Curless
Reconstruction filters

• What does the 2D version of this hat function look like?

$h(x)$ performs linear interpolation

$h(x, y)$ (tent function) performs bilinear interpolation

Better filters give better resampled images

• **Bicubic** is common choice

Cubic reconstruction filter

\[r(x) = \begin{cases}
\frac{(12 - 9B - 6C)x}{6} + \frac{(12 - 9B + 6C)x^2}{6} + (6 - 2B)x
& \text{if } |x| < 1 \\
\frac{(6B + 30C)x^2}{6} + \frac{(-12B - 48C)x^2}{6} + (88 + 24C)x
& \text{if } 1 \leq |x| < 2 \\
0
& \text{otherwise}
\]
Image interpolation

Original image: x 10

- Nearest-neighbor interpolation
- Bilinear interpolation
- Bicubic interpolation
Image interpolation

Also used for resampling
Edge detection

From Sandlot Science
Why edges?

- Humans are sensitive to edges
- Convert a 2D image into a set of curves
 - Extracts salient features of the scene, more compact
Why do we care about edges?

- Extract information, recognize objects
- Recover geometry and viewpoint
Locating Structural Features

• Edges are curves in the image, across which the brightness changes “a lot”
• Corners/Junctions
Aside
Closeup of edges

Source: D. Hoiem
Closeup of edges

Source: D. Hoiem
Closeup of edges
Closeup of edges

Source: D. Hoiem
Characterizing edges

- An edge is a place of *rapid change* in the image intensity function

Source: L. Lazebnik
Intensity

Source: D. Hoiem
Image derivatives

- How can we differentiate a *digital* image $F[x,y]$?
 - Option 1: reconstruct a continuous image, f, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

\[
\frac{\partial f}{\partial x}[x, y] \approx F[x + 1, y] - F[x, y]
\]

How would you implement this as a linear filter?

\[
\frac{\partial f}{\partial x} : \begin{array}{|c|c|c|c|} \hline \hline & & & \hline \hline & & & \hline \hline & & & \hline \hline \end{array} \quad \frac{\partial f}{\partial y} : \begin{array}{|c|c|c|c|} \hline \hline & & & \hline \hline & & & \hline \hline & & & \hline \hline \end{array}
\]

Source: S. Seitz
Image gradient

- The gradient of an image: \(\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix} \)

The gradient points in the direction of most rapid increase in intensity.

\[\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix} \]

\[\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix} \]

The edge strength is given by the gradient magnitude:

\[||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \]

The gradient direction is given by:

\[\theta = \tan^{-1}\left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}\right) \]

- how does this relate to the direction of the edge?

Source: Steve Seitz
Image gradient

Source: L. Lazebnik
With a little Gaussian noise
Effects of noise

Where is the edge?

$\frac{d}{dx} f(x)$

Source: S. Seitz
Solution: smooth first

To find edges, look for peaks in $\frac{d}{dx} (f \ast h)$

Source: S. Seitz
Associative property of convolution

• Differentiation is a convolution
• Convolution is associative: \[\frac{d}{dx}(f * h) = f * \frac{d}{dx}h \]
• This saves us one operation:

Source: S. Seitz
2D edge detection filters

Gaussian

\[h_\sigma(u, v) = \frac{1}{2\pi \sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}} \]

derivative of Gaussian \((x) \)

\[\frac{\partial}{\partial x} h_\sigma(u, v) \]
Derivative of Gaussian filter

x-direction

y-direction
FIGURE 5.3: The scale (i.e., σ) of the Gaussian used in a derivative of Gaussian filter has significant effects on the results. The three images show estimates of the derivative in the x direction of an image of the head of a zebra obtained using a derivative of Gaussian filter with σ one pixel, three pixels, and seven pixels (left to right). Note how images at a finer scale show some hair, the animal’s whiskers disappear at a medium scale, and the fine stripes at the top of the muzzle disappear at the coarser scale.
FIGURE 5.4: The gradient magnitude can be estimated by smoothing an image and then differentiating it. This is equivalent to convolving with the derivative of a smoothing kernel. The extent of the smoothing affects the gradient magnitude; in this figure, we show the gradient magnitude for the figure of a zebra at different scales. At the center, gradient magnitude estimated using the derivatives of a Gaussian with $\sigma = 1$ pixel; and on the right, gradient magnitude estimated using the derivatives of a Gaussian with $\sigma = 2$ pixel. Notice that large values of the gradient magnitude form thick trails.