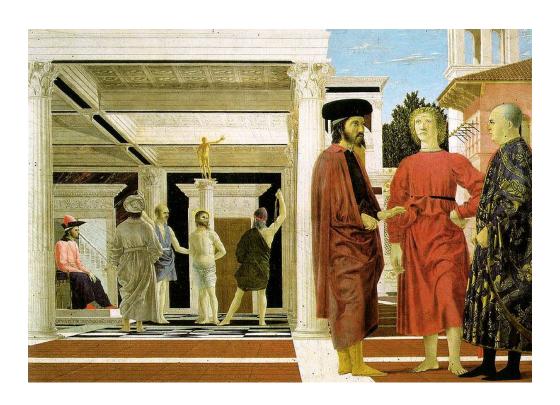
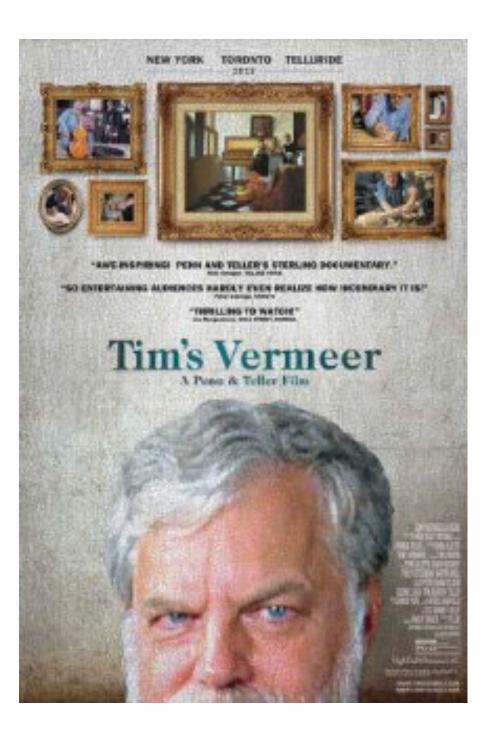
CS4670/5670: Computer Vision Kavita Bala

Lec 19: Single-view modeling 2

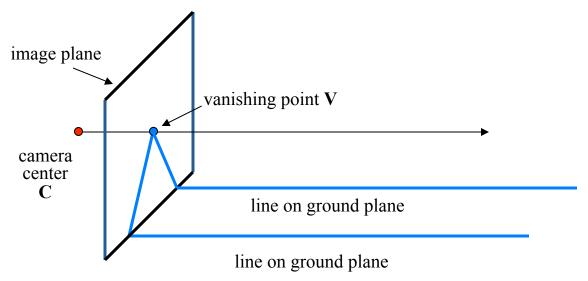




Today

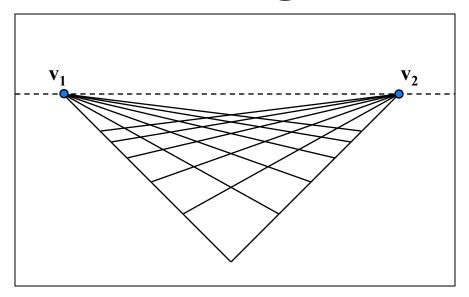
- Vanishing points in images are useful
 - Recover size
 - Camera calibration

Vanishing points



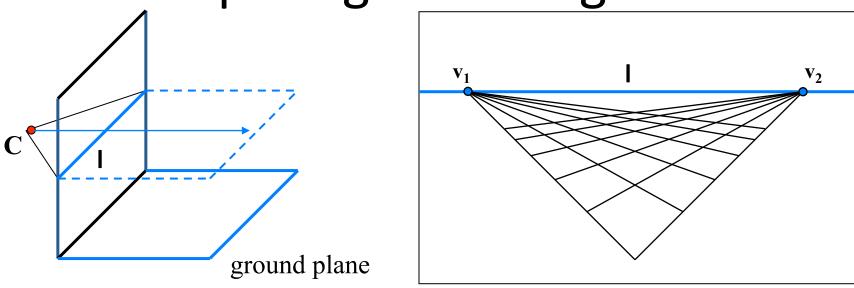
- Properties
 - Any two parallel lines (in 3D) have the same vanishing point v
 - The ray from C through v is parallel to the lines
 - An image may have more than one vanishing point
 - in fact, every image point is a potential vanishing point

Vanishing lines



- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the horizon line
 - also called vanishing line
 - Note that different planes (can) define different vanishing lines

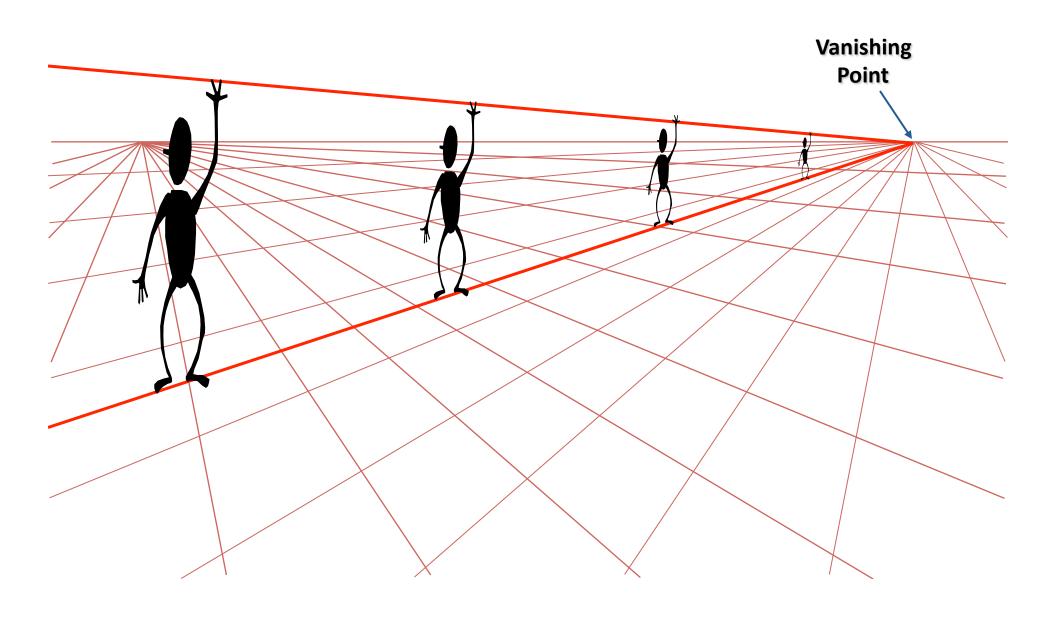
Computing vanishing lines



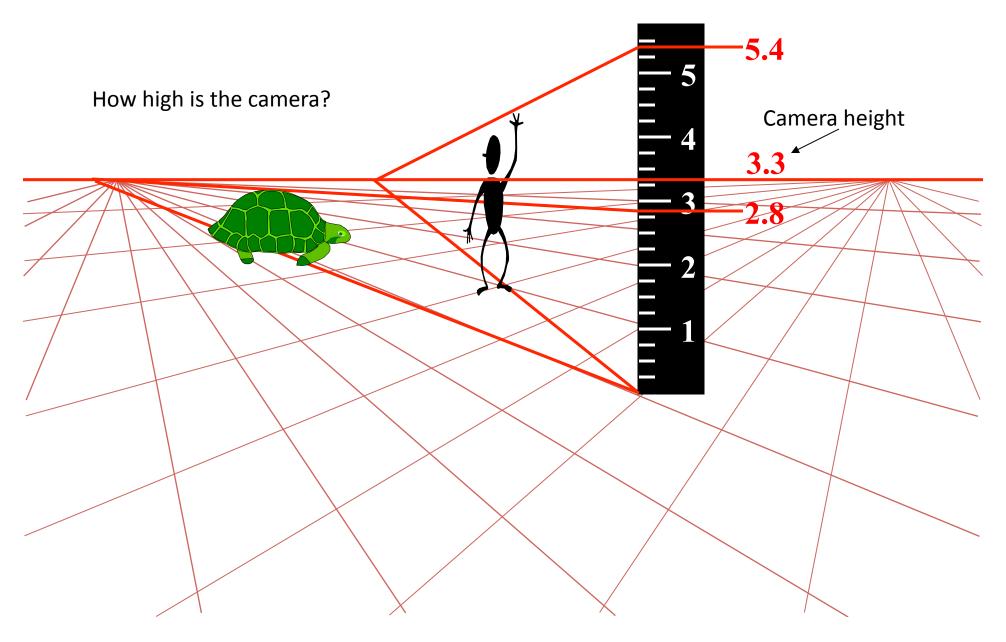
Properties

- I is intersection of horizontal plane through C with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as C project to I
 - points higher than C project above I
- Provides way of comparing height of objects in the scene

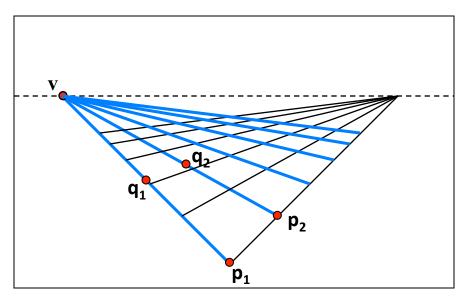
Comparing heights



Measuring height



Computing vanishing points (from lines)

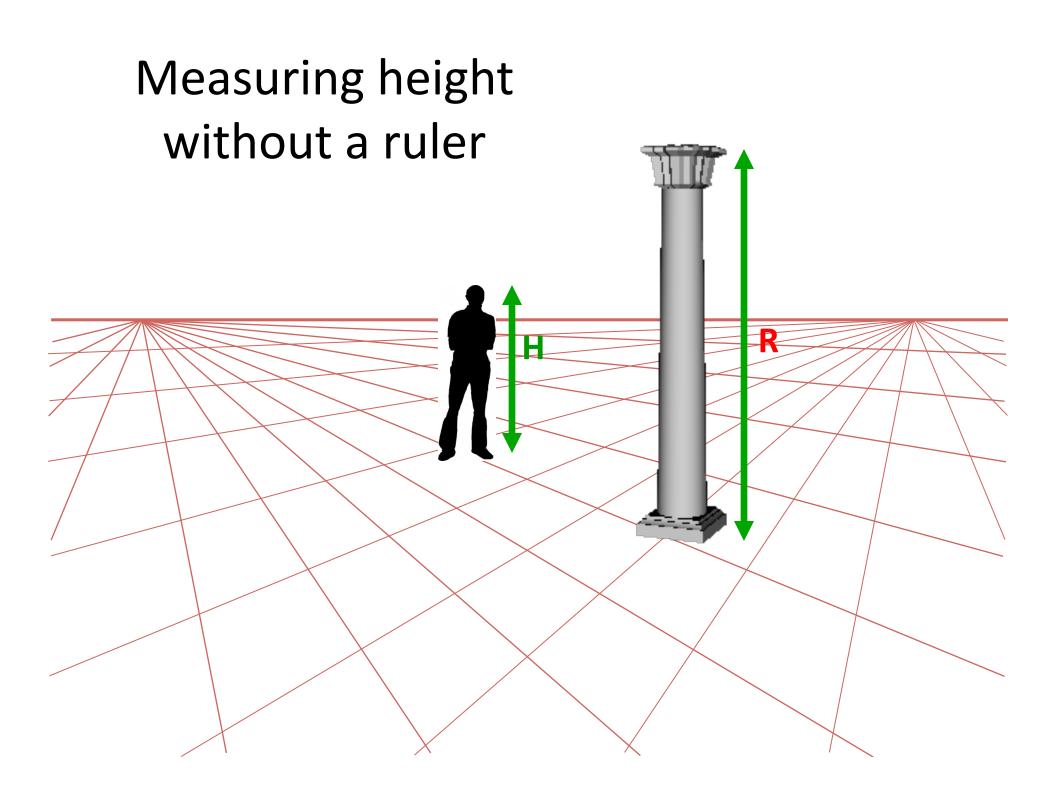


Intersect p₁q₁ with p₂q₂

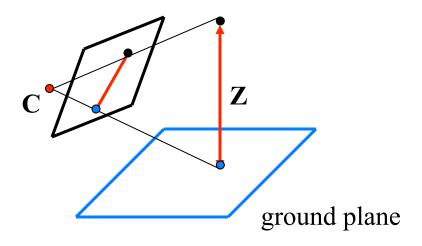
$$v = (p_1 \times q_1) \times (p_2 \times q_2)$$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by **Bob Collins** for one good way of doing this:
 - http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt



Measuring height without a ruler

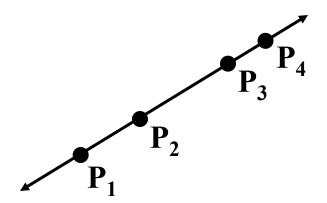


Compute Z from image measurements
Actually get a scaled version of z

The cross ratio

- A Projective Invariant
 - Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points



$$\frac{\|\mathbf{P}_{3} - \mathbf{P}_{1}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{3} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{1}\|}$$

$$\mathbf{P}_i = \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

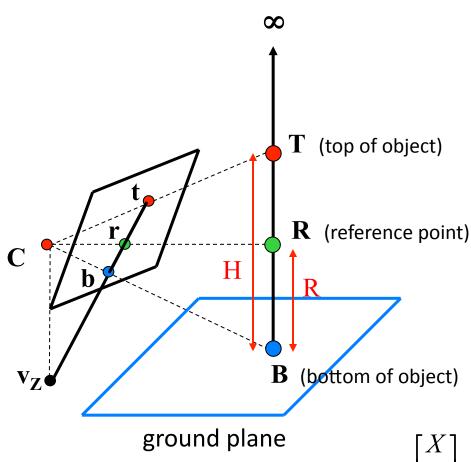
Can permute the point ordering

$$\frac{\|\mathbf{P}_{1} - \mathbf{P}_{3}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{1} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{3}\|}$$

• 4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

Measuring height



scene points represented as

$$\frac{\|\mathbf{T} - \mathbf{B}\| \|\infty - \mathbf{R}\|}{\|\mathbf{R} - \mathbf{B}\| \|\infty - \mathbf{T}\|} = \frac{H}{R}$$

scene cross ratio

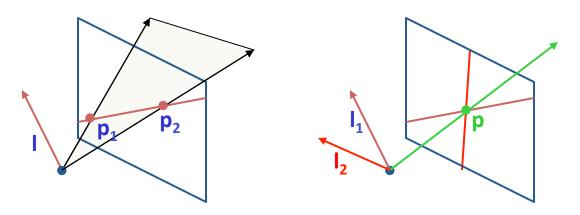
$$\frac{\|\mathbf{t} - \mathbf{b}\| \|\mathbf{v}_Z - \mathbf{r}\|}{\|\mathbf{r} - \mathbf{b}\| \|\mathbf{v}_Z - \mathbf{t}\|} = \frac{H}{R}$$
(reference point)

image cross ratio

$$\mathbf{P} = \begin{bmatrix} Y \\ Z \\ 1 \end{bmatrix} \quad \text{image points as} \quad \mathbf{p} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Point and line duality

A line I is a homogeneous 3-vector



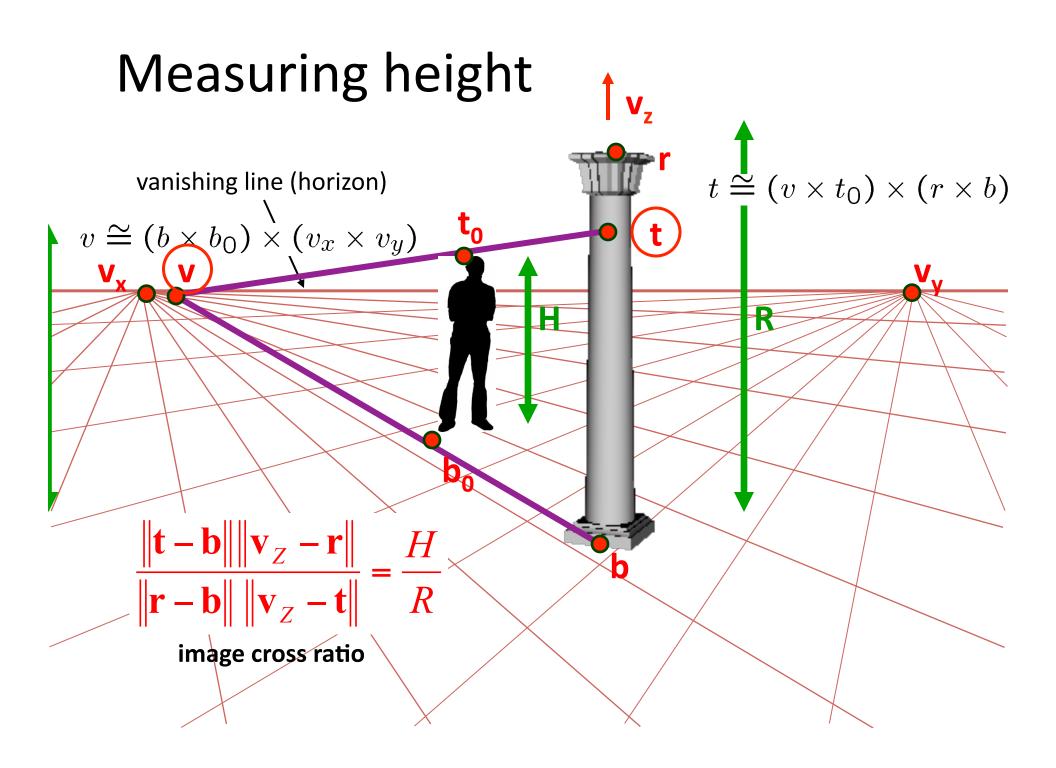
What is the line I spanned by rays $\mathbf{p_1}$ and $\mathbf{p_2}$?

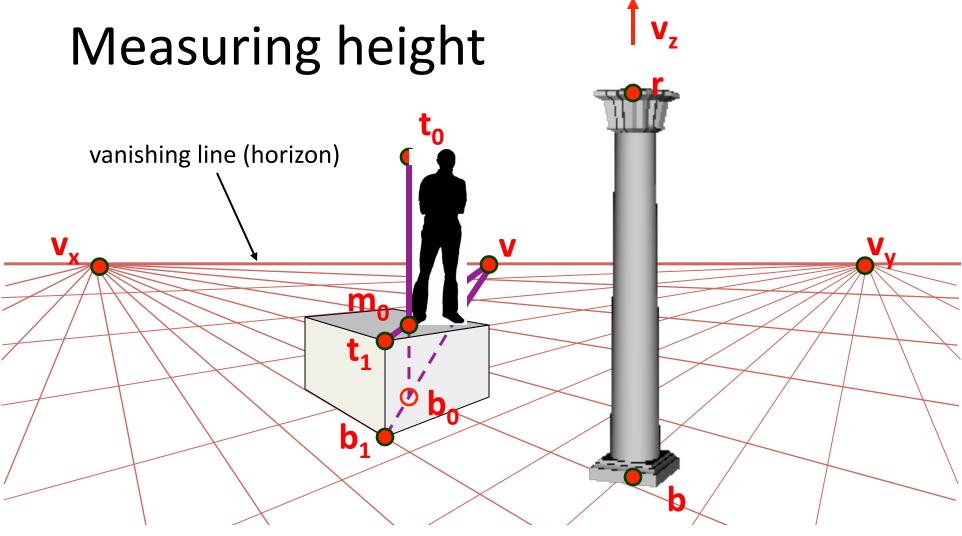
- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I can be interpreted as a plane normal

What is the intersection of two lines l_1 and l_2 ?

• $p \text{ is } \perp \text{ to } l_1 \text{ and } l_2 \implies p = l_1 \times l_2$

Points and lines are dual in projective space





What if the point on the ground plane $\mathbf{b_0}$ is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find **b**₀ as shown above

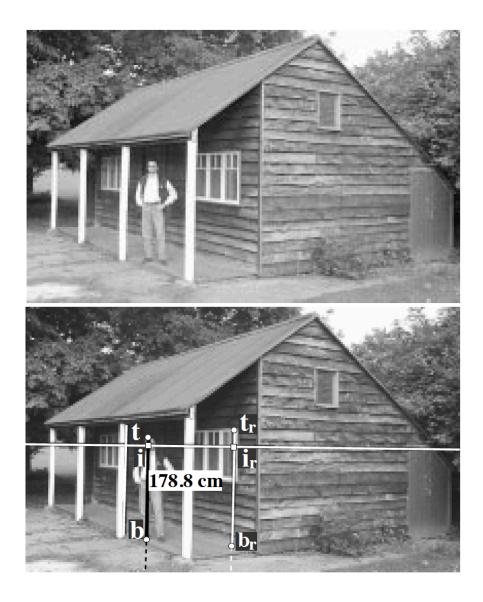
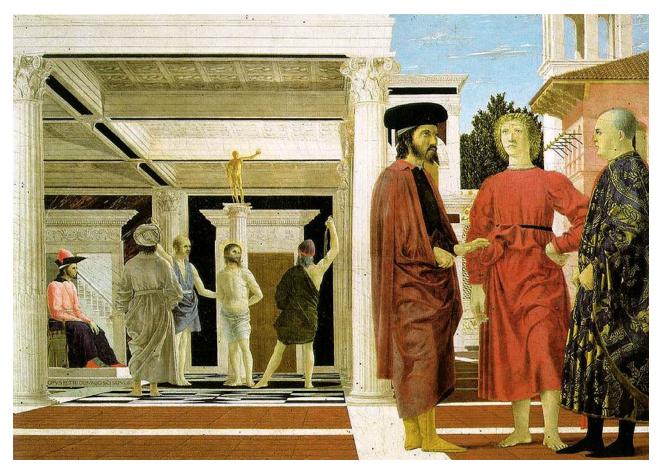
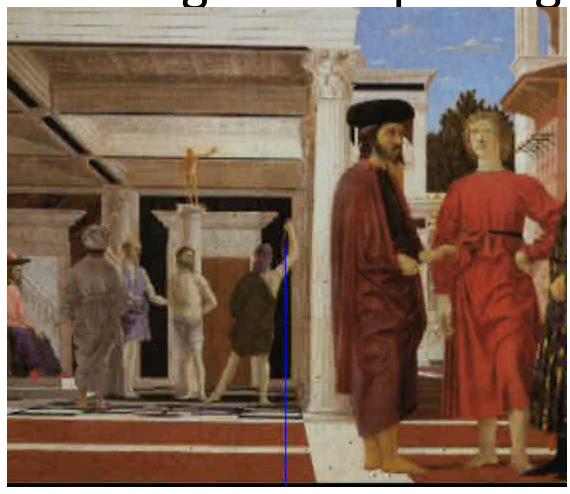


Figure 3: Measuring the height of a person: (top) original image; (bottom) the height of the person is computed from the image as 178.8cm (the true height is 180cm, but note that the person is leaning down a bit on his right foot). The vanishing line is shown in white and the reference height is the segment $(\mathbf{t}_r, \mathbf{b}_r)$. The vertical vanishing point is not shown since it lies well below the image. \mathbf{t} is the top of the head and \mathbf{b} is the base of the feet of the person while \mathbf{i} is the intersection with the vanishing line.

St. Jerome in his Study, H. Steenwick



Flagellation, Piero della Francesca



video by Antonio Criminisi

The following example shows the reconstruction of a chapel depicted in one of the earliest and most famous Renaissance frescoes: **La Trinita' (The Trinity)** (1427) by Masaccio (1401-1428).

original fresco

images of the reconstructed 3D model

Some Related Techniques

- Image-Based Modeling and Photo Editing
 - Mok et al., SIGGRAPH 2001

- Single View Modeling of Free-Form Scenes
 - Zhang et al., CVPR 2001
- Tour Into The Picture
 - Anjyo et al., SIGGRAPH 1997

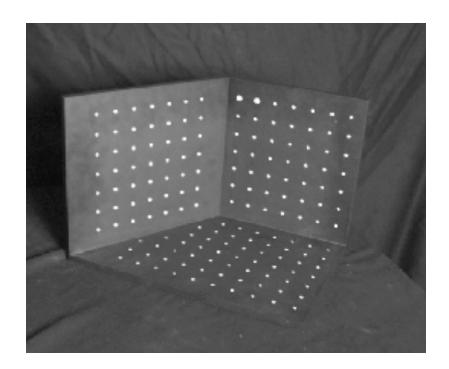
Camera calibration

- Goal: estimate the camera parameters
 - Version 1: solve for projection matrix

- Version 2: solve for camera parameters separately
 - intrinsics (focal length, principle point, pixel size)
 - extrinsics (rotation angles, translation)
 - radial distortion

Calibration using a reference object

- Place a known object in the scene
 - identify correspondence between image 2D and scene 3D
 - compute mapping from scene to image

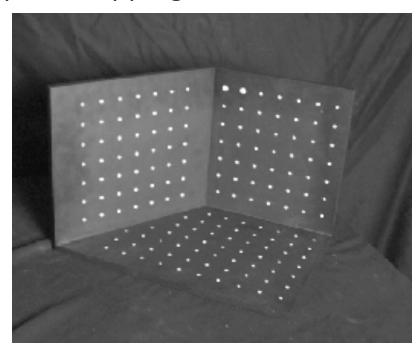


Issues

- must know geometry very accurately
- must know 3D->2D correspondence

Estimating the projection matrix

- Place a known object in the scene
 - identify correspondence between image and scene
 - compute mapping from scene to image



$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

Direct linear calibration

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

$$u_{i} = \frac{m_{00}X_{i} + m_{01}Y_{i} + m_{02}Z_{i} + m_{03}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + m_{23}}$$
$$v_{i} = \frac{m_{10}X_{i} + m_{11}Y_{i} + m_{12}Z_{i} + m_{13}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + m_{23}}$$

$$u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$$
$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$\begin{bmatrix} X_{i} & Y_{i} & Z_{i} & 1 & 0 & 0 & 0 & -u_{i}X_{i} & -u_{i}Y_{i} & -u_{i}Z_{i} & -u_{i} \\ 0 & 0 & 0 & X_{i} & Y_{i} & Z_{i} & 1 & -v_{i}X_{i} & -v_{i}Y_{i} & -v_{i}Z_{i} & -v_{i} \end{bmatrix} \begin{bmatrix} m_{00} \\ m_{01} \\ m_{02} \\ m_{03} \\ m_{10} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{20} \\ m_{21} \\ m_{22} \\ m_{23} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Direct linear calibration

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\ 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 & -v_1 \\ \vdots & & & & & \vdots & & & & & \\ X_n & Y_n & Z_n & 1 & 0 & 0 & 0 & -u_nX_n & -u_nY_n & -u_nZ_n & -u_n \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -v_nX_n & -v_nY_n & -v_nZ_n & -v_n \end{bmatrix} \begin{bmatrix} m_{00} \\ m_{01} \\ m_{02} \\ m_{10} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{20} \\ m_{21} \\ m_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

Can solve for m_{ij} by linear least squares

• use eigenvector trick that we used for homographies. A x = 0

Defines a least squares problem: minimize $\|Ah - 0\|^2$

- Since h is only defined up to scale, solve for unit vector h
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T\mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Direct linear calibration

- Advantage:
 - Very simple to formulate and solve
- Disadvantages:
 - Doesn't tell you the camera parameters
 - Doesn't model radial distortion
 - Hard to impose constraints (e.g., known f)
 - Doesn't minimize the right error function

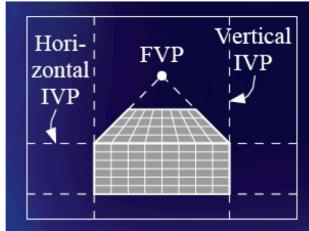
Nonlinear methods are preferred

- Define error function E between projected 3D points and image positions: nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques

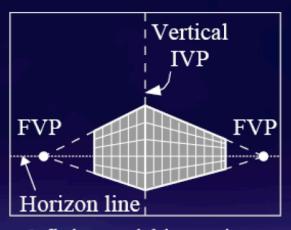
Summary

- Known correspondences
 - (ui, vi) and (Xi, Yi, Zi)
- Compute mij solving system of linear equations
 - May use this to initialize non linear error minimization problem to recover more accurate mij

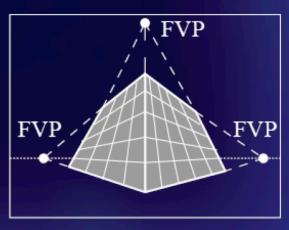
Calibration from vanishing points



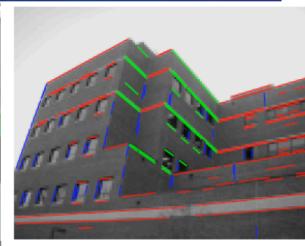
1 finite vanishing point, 2 infinite vanishing points



2 finite vanishing points,1 infinite vanishing point



3 finite vanishing points



 From vanishing points corresponding to 3 orthogonal directions of world

$$e_{i} = [1, 0, 0]^{T}, e_{j} = [0, 1, 0]^{T}, e_{k} = [0 \quad 0 \quad 1]^{T}$$

$$\mathbf{v}_{i} = KRe_{i}, \mathbf{v}_{j} = KRe_{j}, \mathbf{v}_{k} = KRe_{k}.$$

$$e_{i}^{T}e_{j} = 0$$

$$\mathbf{v}_{i}^{T}K^{-T}RR^{T}K^{-1}\mathbf{v}_{j} = \mathbf{v}_{i}^{T}K^{-T}K^{-1}\mathbf{v}_{j} = 0$$

$$K = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix} K^{-1} = \begin{bmatrix} 1/f & 0 & -u_0/f \\ 0 & 1/f & -v_0/f \\ 0 & 0 & 1 \end{bmatrix}$$

$$v_i^T K^{-T} K^{-1} v_j = 0$$

$$v_j^T K^{-T} K^{-1} v_k = 0$$

$$v_i^T K^{-T} K^{-1} v_k = 0$$

3 finite vanishing points: get f, u0, v0

Rotation from vanishing points

• R_{1c} 1st column vector of Rotation matrix

$$R = \begin{bmatrix} R_{1c} & R_{2c} & R_{3c} \end{bmatrix}$$
 $\lambda v_i = KRe_i \qquad e_i = [1, 0, 0]^T$
 $R_{1c} = \lambda K^{-1}v_i$

• λ from $||R_{1c}||_2=1$

Vanishing points and projection matrix

- Projection of x axis = \mathbf{v}_x (X vanishing point)
- similarly, $\pi_2 = \mathbf{v}_Y$, $\pi_3 = \mathbf{v}_Z$
- $\pi_4 = \Pi \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ = projection of world origin

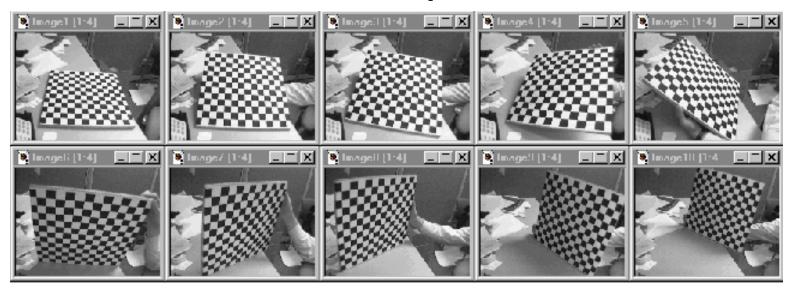
$$\mathbf{\Pi} = \begin{bmatrix} \mathbf{v}_X & \mathbf{v}_Y & \mathbf{v}_Z & \mathbf{o} \end{bmatrix}$$

Not So Fast! We only know v's up to a scale factor

$$\mathbf{\Pi} = \begin{bmatrix} a \mathbf{v}_X & b \mathbf{v}_Y & c \mathbf{v}_Z & \mathbf{o} \end{bmatrix}$$

Can fully specify by providing 3 reference points

Alternative: multi-plane calibration



Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online! (including in OpenCV)
 - Matlab version by Jean-Yves Bouget:
 http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 - Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

Next time

Stereo