Lecture 7: Harris Corner Detection
Announcements

• HW 1 will be out soon

• Sign up for demo slots for PA 1
 – Remember that both partners have to be there
 – We will ask you to explain your partners code
Filters

• Linearly separable filters
Gaussian filters

• Remove “high-frequency” components from the image (low-pass filter)
 – Images become more smooth

• Convolution with self is another Gaussian
 – So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 – Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$

• *Separable* kernel
 – Factors into product of two 1D Gaussians

Source: K. Grauman
Separability of the Gaussian filter

\[G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

\[= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{y^2}{2\sigma^2}\right)\right) \]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x\) and the other a function of \(y\).

In this case, the two functions are the (identical) 1D Gaussian.
Separability example

2D convolution (center location only)

\[
\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{array}
\times
\begin{array}{ccc}
2 & 3 & 3 \\
3 & 5 & 5 \\
4 & 4 & 6 \\
\end{array}
\]

The filter factors into a product of 1D filters:

\[
\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{array}\times
\begin{array}{cc}
1 \\
2 \\
1 \\
\end{array}
\times
\begin{array}{ccc}
1 & 2 & 1 \\
\end{array}
\]

Perform convolution along rows:

\[
\begin{array}{ccc}
1 & 2 & 1 \\
\end{array}\times
\begin{array}{ccc}
2 & 3 & 3 \\
3 & 5 & 5 \\
4 & 4 & 6 \\
\end{array} =
\begin{array}{c}
11 \\
18 \\
18 \\
\end{array}
\]

Followed by convolution along the remaining column:

\[
\begin{array}{c}
1 \\
2 \\
1 \\
\end{array}\times
\begin{array}{c}
11 \\
18 \\
18 \\
\end{array} =
\begin{array}{c}
65 \\
\end{array}
\]

Source: K. Grauman
Lecture 7: Harris Corner Detection
Consider shifting the window W by (u,v)

- define an SSD “error” $E(u,v)$:

$$E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2$$

$$\approx \sum_{(x,y) \in W} [I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix} - I(x, y)]^2$$

$$\approx \sum_{(x,y) \in W} \left[[I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix} \right]^2$$
Corner Detection: Mathematics

The quadratic approximation simplifies to

\[E(u, v) \approx [u \ v] M [u \ v] \]

where \(M \) is a second moment matrix computed from image derivatives (aka structure tensor):

\[
M = \sum_{x,y} \begin{bmatrix}
I_x^2 & I_x I_y \\
I_x I_y & I_y^2
\end{bmatrix}
\]

\[
M = \begin{bmatrix}
\frac{\sum I_x I_x}{\sum I_x I_y} & \frac{\sum I_x I_y}{\sum I_y I_y}
\end{bmatrix} = \sum \begin{bmatrix}
I_x \\
I_y
\end{bmatrix} [I_x \ I_y] = \sum \nabla I (\nabla I)^T
\]
Corners as distinctive interest points

\[M = \sum \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix} \]

2 x 2 matrix of image derivatives (averaged in neighborhood of a point)

Notation:

\[I_x \leftrightarrow \frac{\partial I}{\partial x} \quad I_y \leftrightarrow \frac{\partial I}{\partial y} \quad I_x I_y \leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \]
Weighting the derivatives

• In practice, using a simple window \(W \) doesn’t work too well

\[
H = \sum_{(x,y) \in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]

• Instead, we’ll weight each derivative value based on its distance from the center pixel

\[
H = \sum_{(x,y) \in W} w_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]

Window function \(w(x,y) = \)

1 in window, 0 outside

or

Gaussian

Source: R. Szeliski
Interpreting the second moment matrix

The surface $E(u,v)$ is locally approximated by a quadratic form. Let’s try to understand its shape.

$$E(u,v) \approx [u \ v] M [u \ v]$$

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
Interpreting the second moment matrix

Consider a horizontal “slice” of $E(u, v)$:

$$[u \ v] M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

This is the equation of an ellipse.
Interpreting the second moment matrix

Consider a horizontal “slice” of $E(u, v)$:
\[
\begin{bmatrix} u \\
 v \end{bmatrix} M \begin{bmatrix} u \\
 v \end{bmatrix} = \text{const}
\]

This is the equation of an ellipse.

Diagonalization of M:
\[
M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\
 0 & \lambda_2 \end{bmatrix} R
\]

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R.
Quick eigenvalue/eigenvector review

The **eigenvectors** of a matrix A are the vectors x that satisfy:

$$Ax = \lambda x$$

The scalar λ is the **eigenvalue** corresponding to x

- The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

$$det \begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} = 0$$
Quick eigenvalue/eigenvector review

• The solution:

\[\lambda_{\pm} = \frac{1}{2} \left[(h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right] \]

Once you know \(\lambda \), you find the eigenvectors by solving

\[
\begin{bmatrix}
 h_{11} - \lambda & h_{12} \\
 h_{21} & h_{22} - \lambda
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix} = 0
\]

Symmetric, square matrix: eigenvectors are mutually orthogonal
Corner detection: the math

\[E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

\[M x_{\text{max}} = \lambda_{\text{max}} x_{\text{max}} \]
\[M x_{\text{min}} = \lambda_{\text{min}} x_{\text{min}} \]

Eigenvalues and eigenvectors of M

- Define shift directions with smallest and largest change in error
- \(x_{\text{max}} \) = direction of largest increase in \(E \)
- \(\lambda_{\text{max}} \) = amount of increase in direction \(x_{\text{max}} \)
- \(x_{\text{min}} \) = direction of smallest increase in \(E \)
- \(\lambda_{\text{min}} \) = amount of increase in direction \(x_{\text{min}} \)
Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

- λ_1 and λ_2 are small; E is almost constant in all directions.
- λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions.
- λ_1 much greater than λ_2.

- "Corner" λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions.
- "Edge" $\lambda_1 \gg \lambda_2$.
- "Flat" region λ_1 and λ_2 are small; E is almost constant in all directions.
Corner detection: the math

How do λ_{max}, x_{max}, λ_{min}, and x_{min} affect feature detection?

- What’s our feature scoring function?
Corner detection: the math

• What’s our feature scoring function?
 Want $E(u,v)$ to be large for small shifts in all directions
 • the minimum of $E(u,v)$ should be large, over all unit vectors $[u \ v]$
 • this minimum is given by the smaller eigenvalue (λ_{\min}) of M
Corner detection: take 1

Here’s what you do

- Compute the gradient at each point in the image
- Create the M matrix from the entries in the gradient
- Compute the eigenvalues
- Find points with large response ($\lambda_{\text{min}} >$ threshold)
- Choose those points where λ_{min} is a local maximum
The Harris operator

\(\lambda_{\text{min}} \) is a variant of the “Harris operator” for feature detection

\[
\begin{align*}
 f &= \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)^2} \\
 f &= \frac{\det(M)}{\text{trace}(M)^2}
\end{align*}
\]

- The \textit{trace} is the sum of the diagonals, i.e., \(\text{trace}(M) = h_{11} + h_{22} \)
- Very similar to \(\lambda_{\text{min}} \) but less expensive (no square root)
- Called the “Harris Corner Detector” or “Harris Operator”
- Lots of other detectors, this is one of the most popular
The Harris operator

\[\lambda_{\text{min}} \]
Corner response function

\[R = \det(M) - \alpha \text{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 \]

\(\alpha \): constant (0.04 to 0.1)
Harris corner detector

1) Compute M matrix for each image window to get their *cornerness* scores.
2) Find points whose surrounding window gave large corner response ($f >$ threshold)
3) Take the points of local maxima, i.e., perform non-maximum suppression

Harris Detector \cite{Harris88}

\[
\mu(\sigma_1, \sigma_D) = g(\sigma_1) \ast \begin{bmatrix}
I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\
I_x I_y(\sigma_D) & I_y^2(\sigma_D)
\end{bmatrix}
\]

1. Image derivatives (optionally, blur first)

2. Square of derivatives

\[
\text{det } M = \lambda_1 \lambda_2 \\
\text{trace } M = \lambda_1 + \lambda_2
\]

3. Cornerness function – both eigenvalues are strong

Compute \(f \)

4. Non-maxima suppression
Harris detector example
f value (red high, blue low)
Threshold (f > value)
Find local maxima of f
Harris features (in red)
Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - **Invariance**: image is transformed and corner locations do not change
 - **Covariance**: if we have two transformed versions of the same image, features should be detected in corresponding locations
Image transformations

• Geometric

 Rotation

• Photometric

 Intensity change
Affine intensity change

$I \rightarrow aI + b$

Only derivatives \Rightarrow invariance to intensity shift $I \rightarrow I + b$

Intensity scaling: $I \rightarrow aI$

Partially invariant to affine intensity change
Harris: image translation

- Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation
Harris: image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation
Scaling

Corner location is not covariant to scaling!

All points will be classified as edges
Scale invariant detection

Suppose you’re looking for corners

Key idea: find scale that gives local maximum of f
 – in both position and scale
 – One definition of f: the Harris operator
Questions?