CS4670/5670: Computer Vision Kavita Bala

Lecture 3: Edge detection

21170077

From Sandlot Science

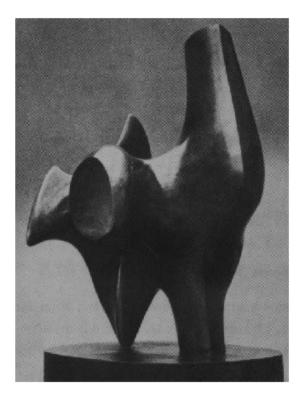
Announcements

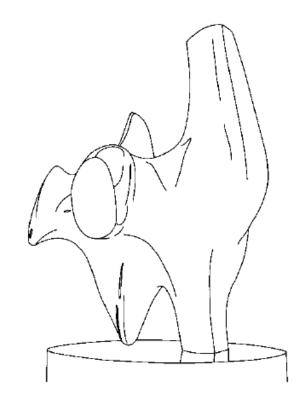
Find partners on piazza

PA 1 will be out on Monday

Quiz on Monday or Wednesday, beginning of class

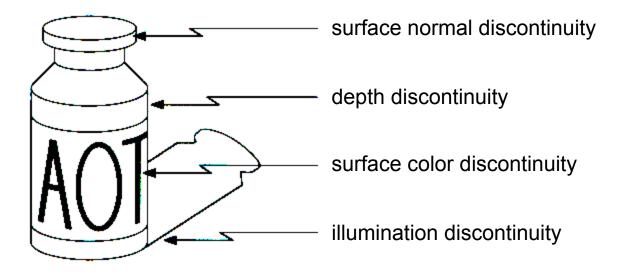
Why edges?





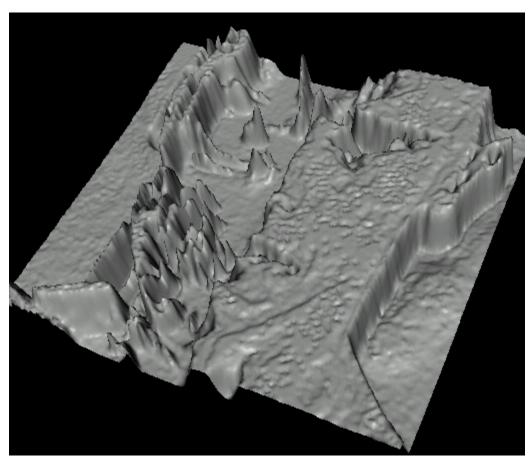
- Humans are sensitive to edges
- Convert a 2D image into a set of curves
 - Extracts salient features of the scene, more compact

Origin of Edges



Edges are caused by a variety of factors

Images as functions...



 Edges look like steep cliffs

Characterizing edges

 An edge is a place of rapid change in the image intensity function

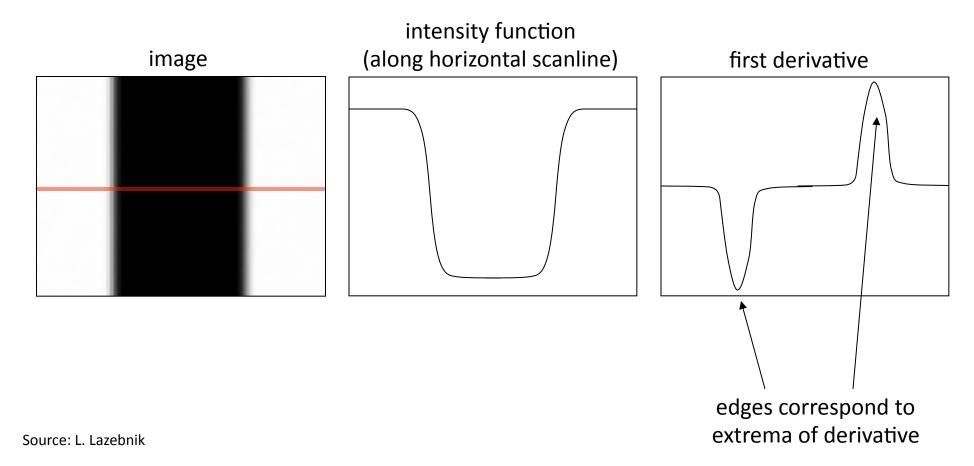
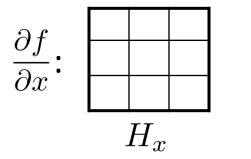


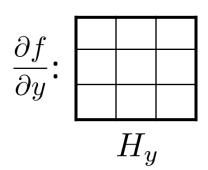
Image derivatives

- How can we differentiate a digital image F[x,y]?
 - Option 1: reconstruct a continuous image, f, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?





Source: S. Seitz

Image gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

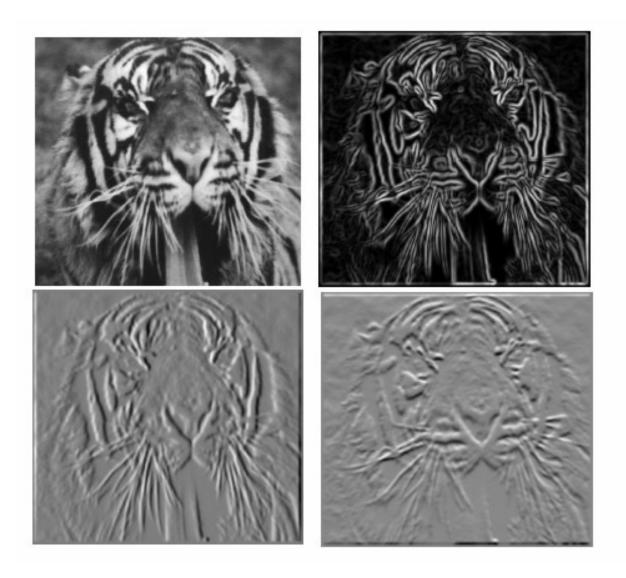
The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

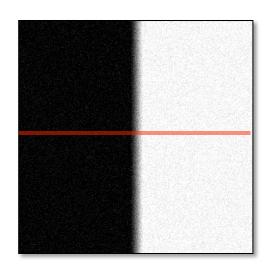
Source: Steve Seitz

Image gradient

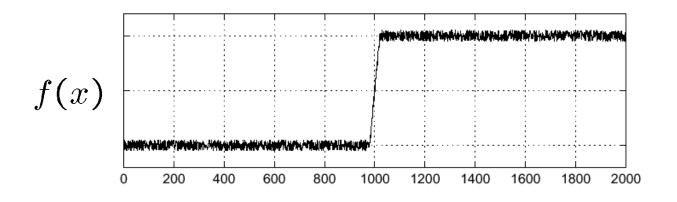


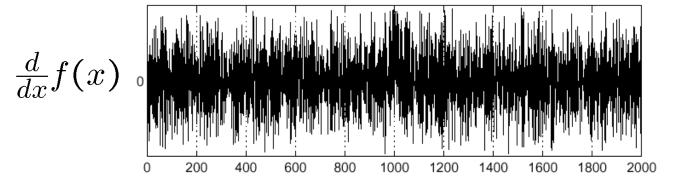
Source: L. Lazebnik

Effects of noise



Noisy input image

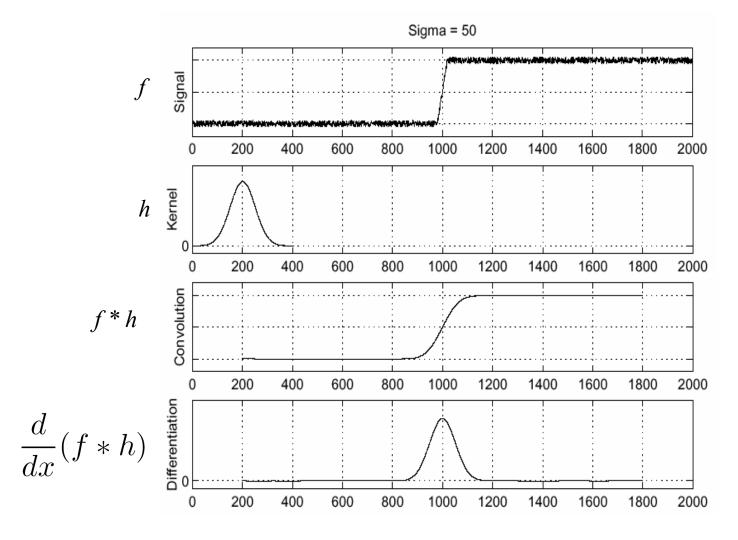




Where is the edge?

Source: S. Seitz

Solution: smooth first



To find edges, look for peaks in $\frac{d}{dx}(f*h)$

Source: S. Seitz

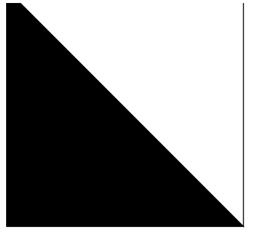
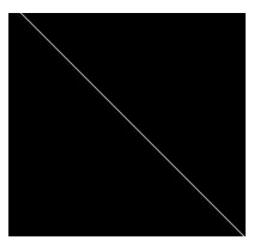


Image with Edge



Edge Location

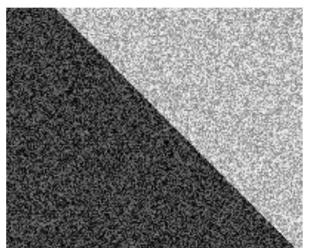
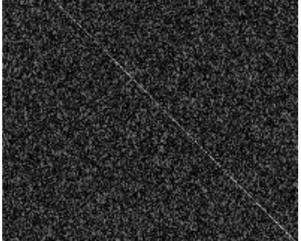
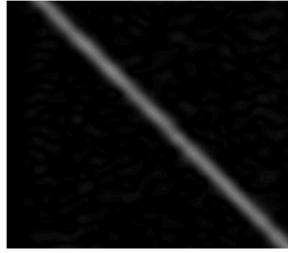


Image + Noise



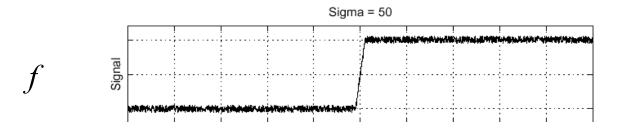
Derivatives detect edge and noise



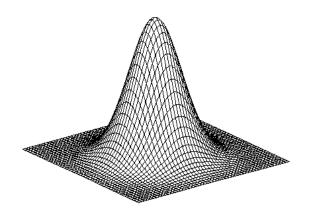
Smoothed derivative removes noise, but blurs edge

Associative property of convolution

- Differentiation is a convolution
- Convolution is associative: $\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$
- This saves us one operation:

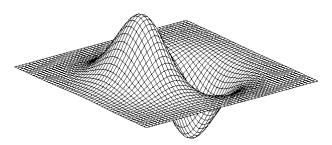


2D edge detection filters



Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$



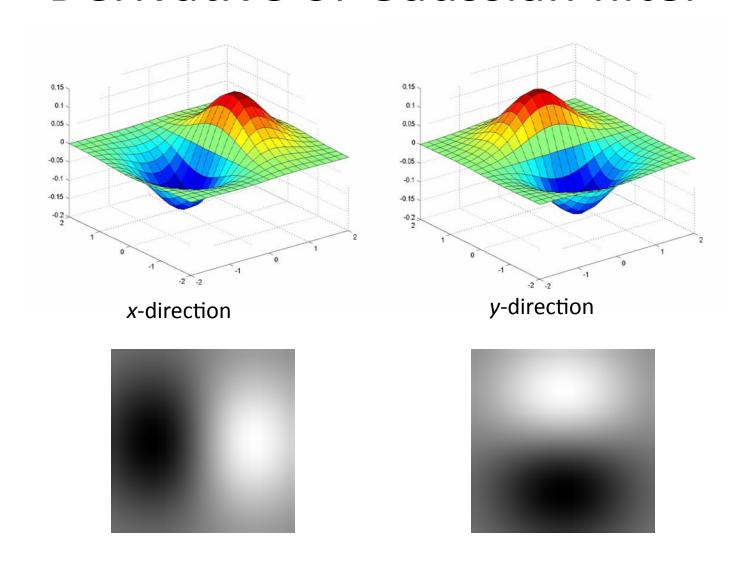
derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

$$\nabla G_{\sigma}(\boldsymbol{x}) = \left(\frac{\partial G_{\sigma}}{\partial x}, \frac{\partial G_{\sigma}}{\partial y}\right)(\boldsymbol{x}) = [-x - y] \quad \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$\nabla^2 G_{\sigma}(\boldsymbol{x}) = \frac{1}{\sigma^3} \left(2 - \frac{x^2 + y^2}{2\sigma^2} \right) \exp\left(-\frac{x^2 + y^2}{2\sigma^2} \right)$$

Derivative of Gaussian filter



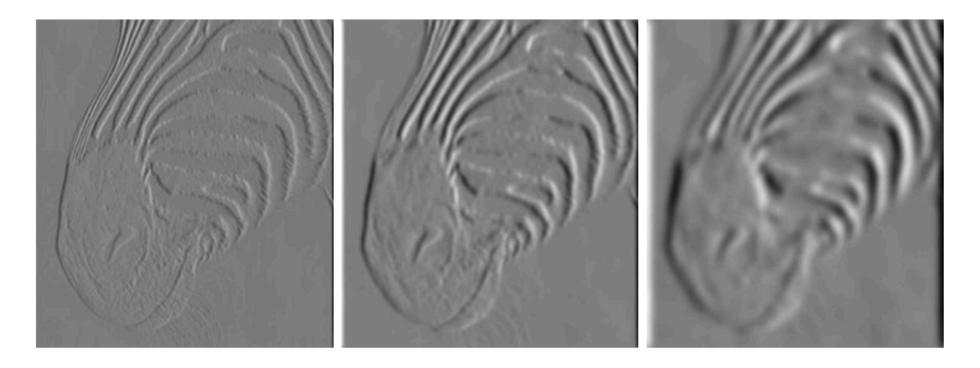


FIGURE 5.3: The scale (i.e., σ) of the Gaussian used in a derivative of Gaussian filter has significant effects on the results. The three images show estimates of the derivative in the x direction of an image of the head of a zebra obtained using a derivative of Gaussian filter with σ one pixel, three pixels, and seven pixels (left to right). Note how images at a finer scale show some hair, the animal's whiskers disappear at a medium scale, and the fine stripes at the top of the muzzle disappear at the coarser scale.

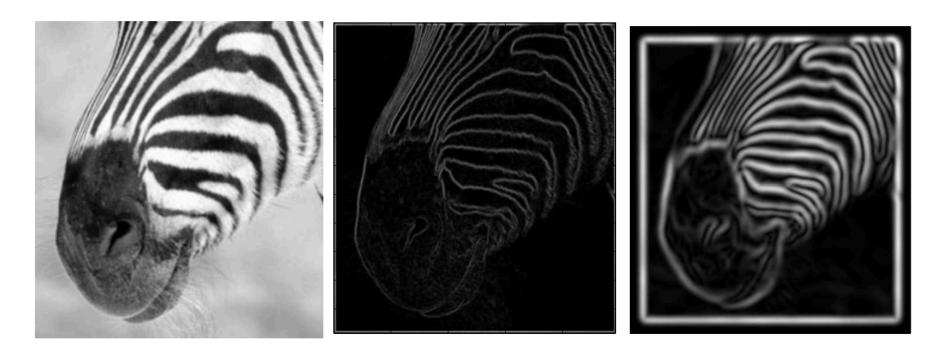


FIGURE 5.4: The gradient magnitude can be estimated by smoothing an image and then differentiating it. This is equivalent to convolving with the derivative of a smoothing kernel. The extent of the smoothing affects the gradient magnitude; in this figure, we show the gradient magnitude for the figure of a zebra at different scales. At the **center**, gradient magnitude estimated using the derivatives of a Gaussian with $\sigma = 1$ pixel; and on the **right**, gradient magnitude estimated using the derivatives of a Gaussian with $\sigma = 2$ pixel. Notice that large values of the gradient magnitude form thick trails.

The Sobel operator

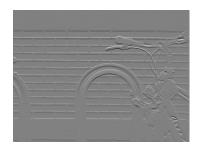
- Common approximation of derivative of Gaussian
 - A mask (not a convolution kernel)

<u>1</u> 8	-1	0	1		
	-2	0	2		
	-1	0	1		
s_x					

1	1	2	1	
8	0	0	0	
	-1	-2	-1	
$\overline{s_y}$				

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient magnitude

Sobel operator: example



Source: Wikipedia

Questions?

CS4670: Computer Vision

Image Resampling

Image

This image is too big to fit on the screen. How can we generate a half-sized version?

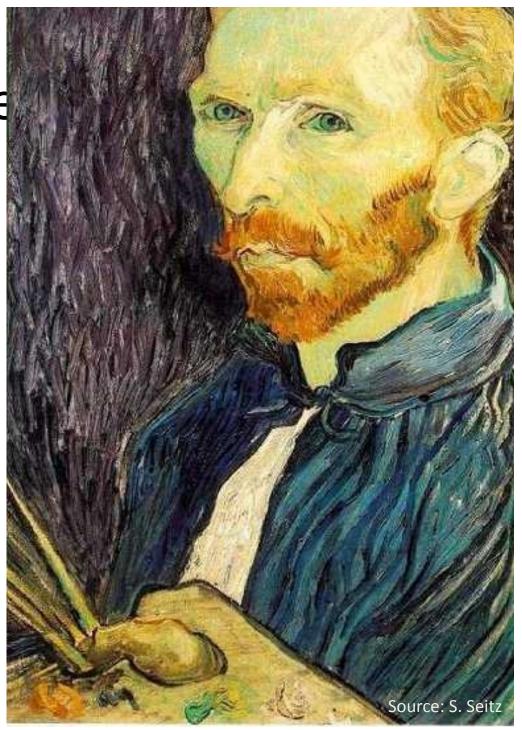
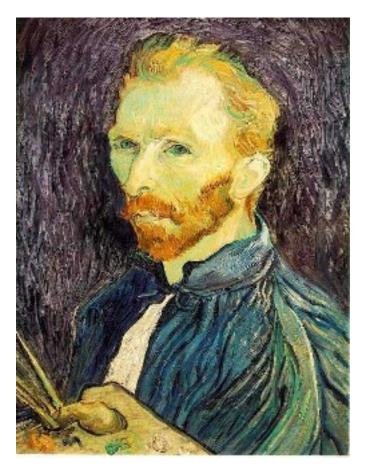


Image sub-sampling



Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

1/4

Source: S. Seitz

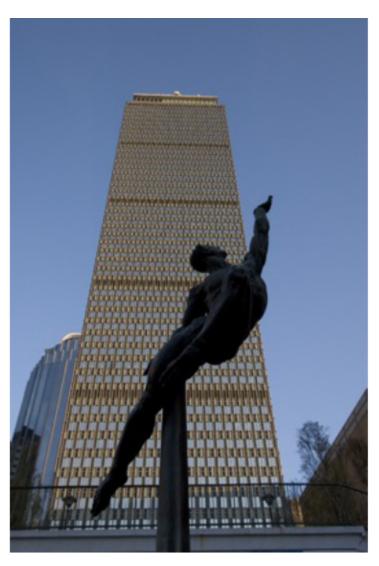
Image sub-sampling



Why does this look so crufty?

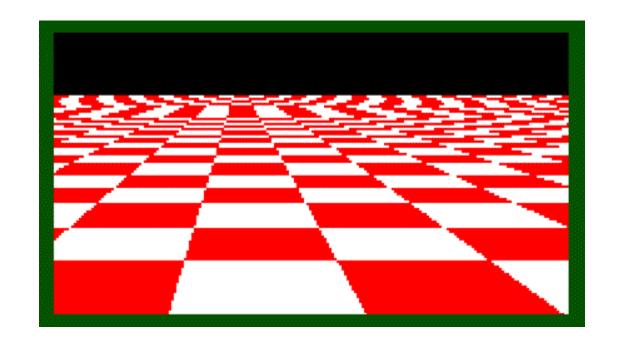
Source: S. Seitz

Image sub-sampling



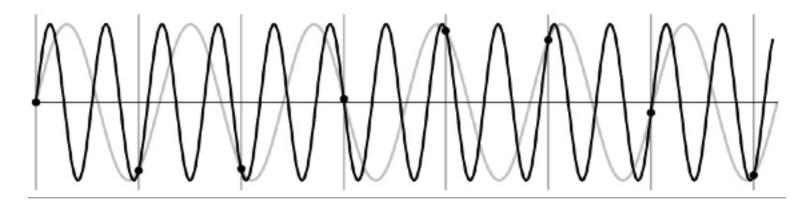
Source: F. Durand

Even worse for synthetic images



What is aliasing?

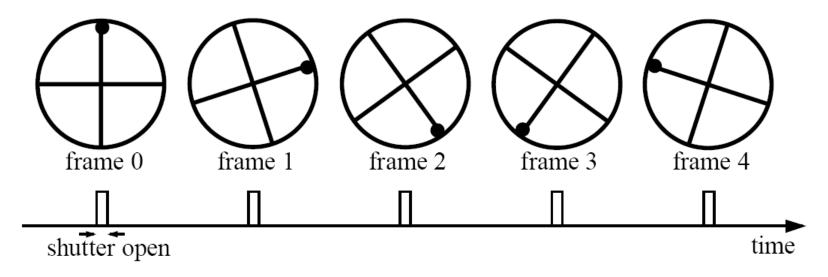
- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - aliasing: signals "traveling in disguise" as other frequencies



Wagon-wheel effect

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

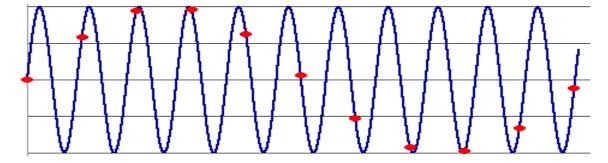


Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

(See http://www.michaelbach.de/ot/mot_wagonWheel/index.html)

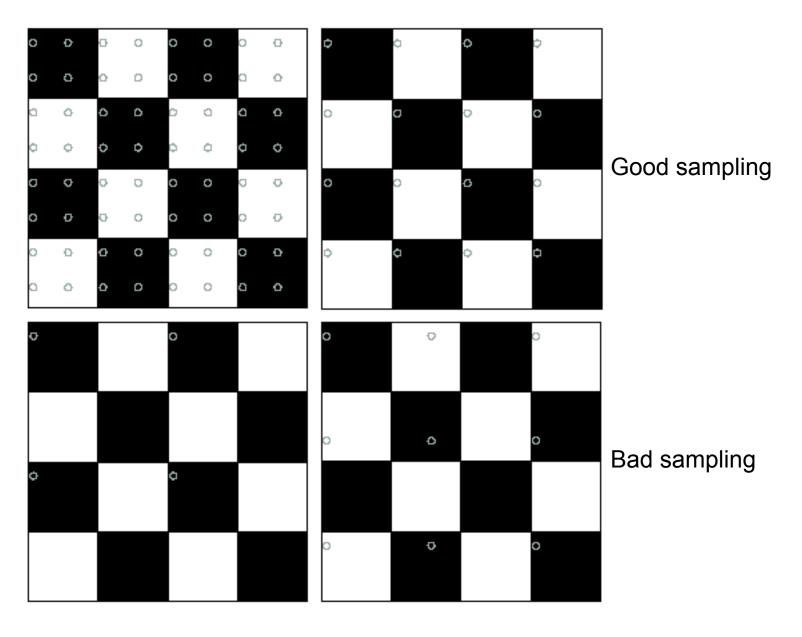
Source: L. Zhang

Aliasing



- Occurs when your sampling rate is not high enough to capture the amount of detail in your image
- Can give you the wrong signal/image—an alias
- To do sampling right, need to understand the structure of your signal/image
- Enter Monsieur Fourier...
- To avoid aliasing:
 - sampling rate ≥ 2 * max frequency in the image
 - said another way: ≥ two samples per cycle
 - This minimum sampling rate is called the Nyquist rate

Nyquist limit – 2D example

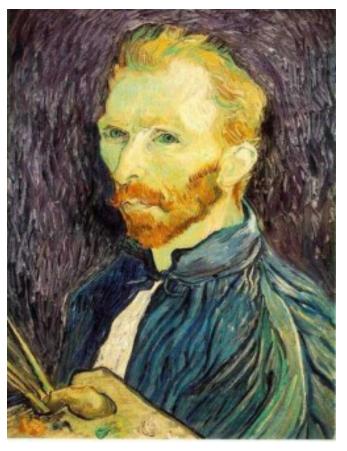


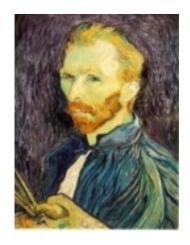
Aliasing

- When downsampling by a factor of two
 - Original image has frequencies that are too high

How can we fix this?

Gaussian pre-filtering



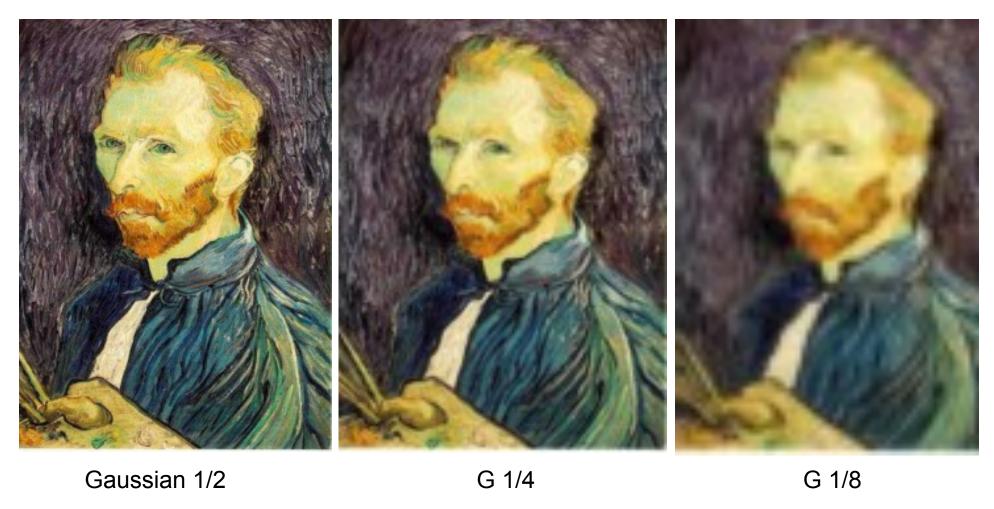


G 1/4

Gaussian 1/2

• Solution: filter the image, then subsample

Subsampling with Gaussian pre-filtering

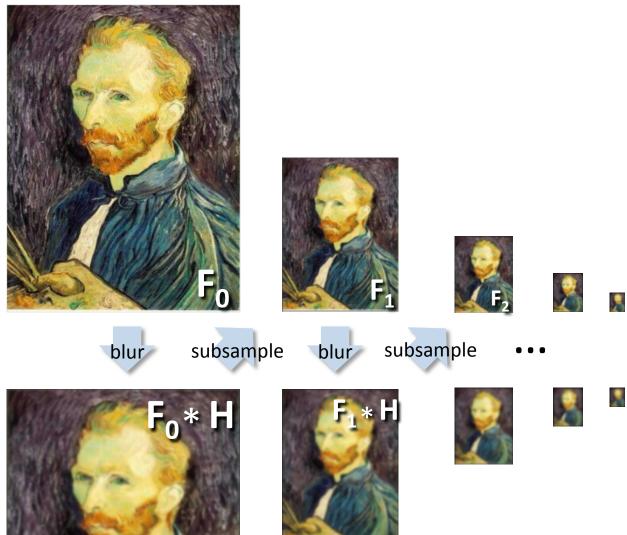


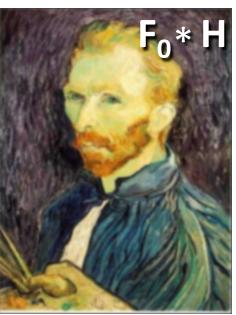
• Solution: filter the image, then subsample

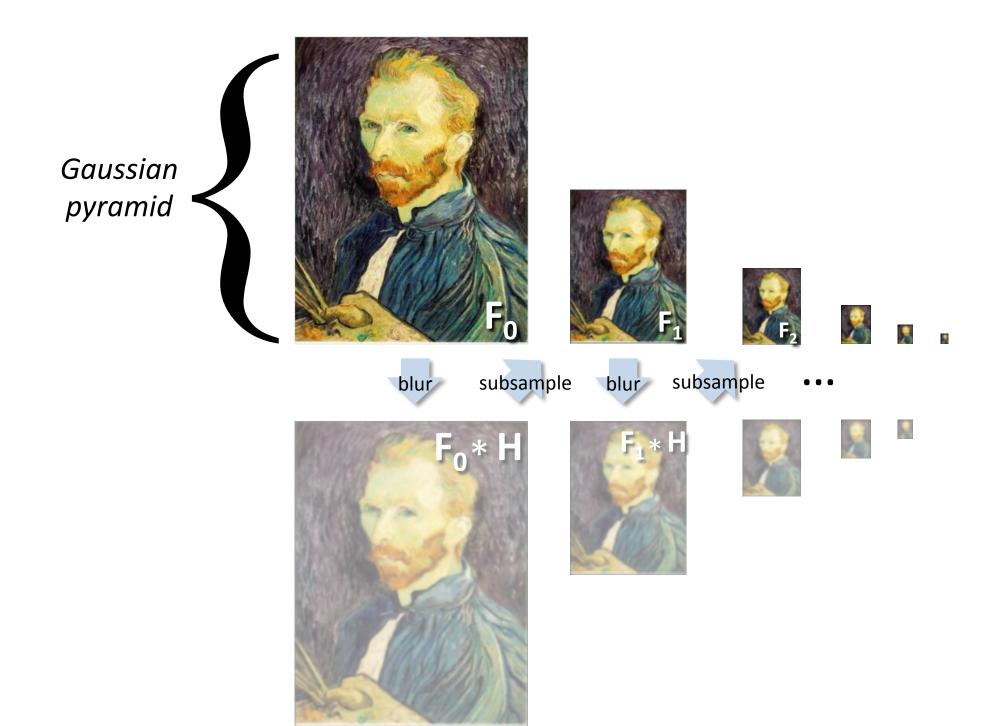
Compare with...

Gaussian pre-filtering

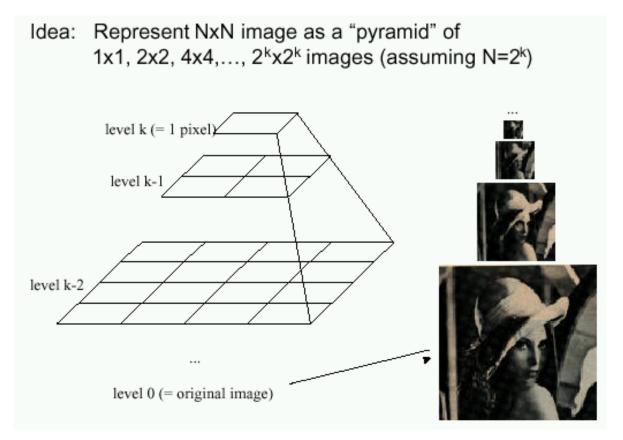
Solution: filter the image, then subsample







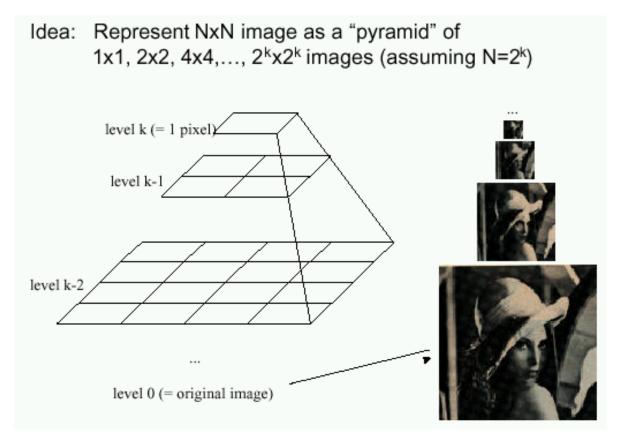
Gaussian pyramids [Burt and Adelson, 1983]



- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

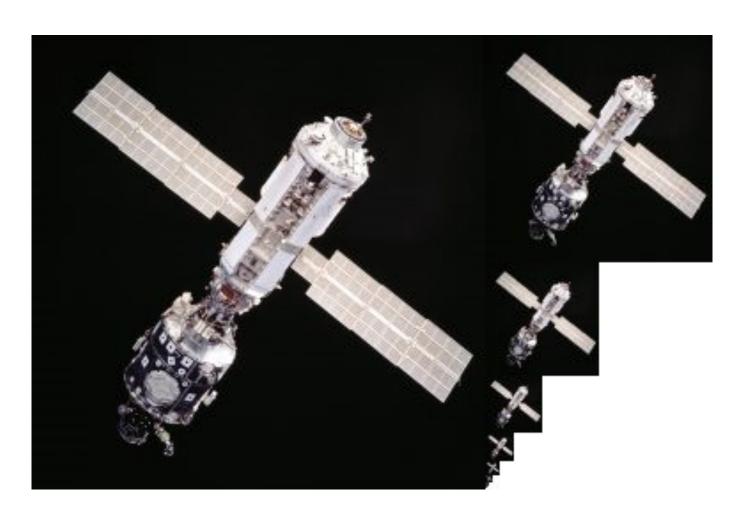
Gaussian Pyramids have all sorts of applications in computer vision

Gaussian pyramids [Burt and Adelson, 1983]



 How much space does a Gaussian pyramid take compared to the original image?

Gaussian Pyramid



Questions?