Course review
Topics – image processing

- Filtering
- Edge detection
- Image resampling / aliasing / interpolation
- Feature detection
 - Harris corners
 - SIFT
 - Invariant features
- Feature matching
Topics – 2D geometry

• Image transformations
• Image alignment / least squares
• RANSAC
• Panoramas
Topics – 3D geometry

- Cameras
- Perspective projection
- Single-view modeling
- Stereo
- Two-view geometry (F-matrices, E-matrices)
- Structure from motion
- Multi-view stereo
Topics – Recognition

• Skin detection / probabilistic modeling
• Eigenfaces
• Viola-Jones face detection (cascades / AdaBoost)
• Bag-of-words models
• Segmentation / graph cuts / normalized cuts
• HoG / SVMs / Pedestrian detection
Topics – Light, reflectance, cameras

- Light, BRDFs
- Photometric stereo
- Computational photography
Questions?
Image Processing
Linear filtering

• One simple version: linear filtering (cross-correlation, convolution)
 – Replace each pixel by a linear combination of its neighbors

• The prescription for the linear combination is called the “kernel” (or “mask”, “filter”)

10	5	3
4	6	1
1	1	8

Local image data

0	0	0
0	0.5	0
0	1	0.5

kernel

Modified image data

Source: L. Zhang
Convolution

• Same as cross-correlation, except that the kernel is “flipped” (horizontally and vertically)

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

This is called a convolution operation:

\[G = H \ast F \]

• Convolution is commutative and associative
Gaussian Kernel

\[G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

Source: C. Rasmussen
Image gradient

- **The gradient** of an image: \(\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \)

 The gradient points in the direction of most rapid increase in intensity.

\[
\nabla f = \left[\frac{\partial f}{\partial x}, 0 \right]
\]

\[
\nabla f = \left[0, \frac{\partial f}{\partial y} \right]
\]

The edge strength is given by the gradient magnitude:

\[
||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}
\]

The gradient direction is given by:

\[
\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)
\]

- how does this relate to the direction of the edge?

Source: Steve Seitz
Finding edges

gradient magnitude
Finding edges

thinning

(non-maximum suppression)
Image sub-sampling

1/2
1/4 (2x zoom)
1/8 (4x zoom)

Why does this look so crufty?

Source: S. Seitz
Subsampling with Gaussian pre-filtering

- Solution: filter the image, *then* subsample

Source: S. Seitz
Image interpolation

- **sinc(x)** → “Ideal” reconstruction
- II(x) → Nearest-neighbor interpolation
- \(\Lambda(x) \) → Linear interpolation
- gauss(x) → Gaussian reconstruction

Source: B. Curless
Image interpolation

Original image: x 10

Nearest-neighbor interpolation Bilinear interpolation Bicubic interpolation
The second moment matrix

The surface $E(u,v)$ is locally approximated by a quadratic form.

$$E(u, v) \approx A u^2 + 2B uv + Cv^2$$

$$\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y) \in W} I_x^2$$

$$B = \sum_{(x,y) \in W} I_x I_y$$

$$C = \sum_{(x,y) \in W} I_y^2$$
The Harris operator

λ_{min} is a variant of the “Harris operator” for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

$$= \frac{\text{determinant}(H)}{\text{trace}(H)}$$

- The trace is the sum of the diagonals, i.e., $\text{trace}(H) = h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the “Harris Corner Detector” or “Harris Operator”
- Lots of other detectors, this is one of the most popular
Laplacian of Gaussian

- “Blob” detector

- Find maxima and minima of LoG operator in space and scale
Scale-space blob detector: Example

sigma = 11.9912
Feature distance

How to define the difference between two features f_1, f_2?

- Better approach: ratio distance $= \frac{||f_1 - f_2||}{||f_1 - f_2'||}$
 - f_2 is best SSD match to f_1 in I_2
 - f_2' is 2nd best SSD match to f_1 in I_2
 - gives large values for ambiguous matches
2D Geometry
Parametric (global) warping

- Transformation T is a coordinate-changing machine:
 \[p' = T(p) \]

- What does it mean that T is global?
 - Is the same for any point p
 - Can be described by just a few numbers (parameters)

- Let’s consider linear xforms (can be represented by a 2D matrix):
 \[
 p' = Tp = \begin{bmatrix} x' \\ y' \end{bmatrix} = T \begin{bmatrix} x \\ y \end{bmatrix}
 \]
2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member

<table>
<thead>
<tr>
<th>Name</th>
<th>Matrix</th>
<th># D.O.F.</th>
<th>Preserves:</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>$\begin{bmatrix} I & t \end{bmatrix}_{2\times3}$</td>
<td>2</td>
<td>orientation + ⋯</td>
<td></td>
</tr>
<tr>
<td>rigid (Euclidean)</td>
<td>$\begin{bmatrix} R & t \end{bmatrix}_{2\times3}$</td>
<td>3</td>
<td>lengths + ⋯</td>
<td></td>
</tr>
<tr>
<td>similarity</td>
<td>$\begin{bmatrix} sR & t \end{bmatrix}_{2\times3}$</td>
<td>4</td>
<td>angles + ⋯</td>
<td></td>
</tr>
<tr>
<td>affine</td>
<td>$\begin{bmatrix} A \end{bmatrix}_{2\times3}$</td>
<td>6</td>
<td>parallelism + ⋯</td>
<td></td>
</tr>
<tr>
<td>projective</td>
<td>$\begin{bmatrix} \tilde{H} \end{bmatrix}_{3\times3}$</td>
<td>8</td>
<td>straight lines</td>
<td></td>
</tr>
</tbody>
</table>
Projective Transformations aka Homographies aka Planar Perspective Maps

\[H = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \]

Called a *homography* (or *planar perspective map*)
Inverse Warping

• Get each pixel \(g(x',y') \) from its corresponding location \((x,y) = T^{-1}(x,y)\) in \(f(x,y) \)

• Requires taking the inverse of the transform
Affine transformations

\[
\begin{bmatrix}
 x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix} = \begin{bmatrix}
ax + by + c \\
dx + ey + f \\
1
\end{bmatrix}
\]
Solving for affine transformations

- **Matrix form**

\[
\begin{bmatrix}
 x_1 & y_1 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & x_2 & y_2 & 1 \\
 \vdots \\
 x_n & y_n & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & x_n & y_n & 1 \\
\end{bmatrix} \begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e \\
 f \\
\end{bmatrix} = \begin{bmatrix}
 x'_1 \\
 y'_1 \\
 x'_2 \\
 y'_2 \\
 \vdots \\
 x'_n \\
 y'_n \\
\end{bmatrix} = \begin{bmatrix}
 \mathbf{t} \\
\end{bmatrix}_{6 \times 1} = \begin{bmatrix}
 \mathbf{b} \\
\end{bmatrix}_{2n \times 1}
\]
RANSAC

• General version:
 1. Randomly choose s samples
 • Typically $s =$ minimum sample size that lets you fit a model
 2. Fit a model (e.g., line) to those samples
 3. Count the number of inliers that approximately fit the model
 4. Repeat N times
 5. Choose the model that has the largest set of inliers
Projecting images onto a common plane

Each image is warped with a homography H

Can’t create a 360 panorama this way...
3D Geometry
Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the \textit{aperture}
 - How does this transform the image?
Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1/d & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
-z/d \\
1
\end{bmatrix}
\Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})
\]

divide by third coordinate

This is known as **perspective projection**

- The matrix is the **projection matrix**
Projection matrix

\[\Pi = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & 0 \\ 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I_{3 \times 3} & -c \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[\Pi = K \begin{bmatrix} R & -Rc \end{bmatrix} \]

(t in book’s notation)
Point and line duality

– A line \(l \) is a homogeneous 3-vector
– It is \(\perp \) to every point (ray) \(p \) on the line: \(l \cdot p = 0 \)

What is the line \(l \) spanned by rays \(p_1 \) and \(p_2 \)?
 • \(l \) is \(\perp \) to \(p_1 \) and \(p_2 \) \(\Rightarrow \) \(l = p_1 \times p_2 \)
 • \(l \) can be interpreted as a plane normal

What is the intersection of two lines \(l_1 \) and \(l_2 \)?
 • \(p \) is \(\perp \) to \(l_1 \) and \(l_2 \) \(\Rightarrow \) \(p = l_1 \times l_2 \)

Points and lines are dual in projective space
Vanishing points

- **Properties**
 - Any two parallel lines (in 3D) have the same vanishing point \mathbf{v}
 - The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
 - An image may have more than one vanishing point
 - in fact, every image point is a potential vanishing point
Measuring height

Camera height

5.4
3.3
2.8
Your basic stereo algorithm

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match **windows**
Stereo as energy minimization

- Better objective function

\[E(d) = E_d(d) + \lambda E_s(d) \]

- **match cost**: Want each pixel to find a good match in the other image
- **smoothness cost**: Adjacent pixels should (usually) move about the same amount
This epipolar geometry of two views is described by a Very Special 3x3 matrix F, called the Fundamental matrix F

F maps (homogeneous) points in image 1 to lines in image 2!

The epipolar line (in image 2) of point p is: Fp

Epipolar constraint on corresponding points: $q^T F p = 0$
Epipolar geometry demo
8-point algorithm

\[
\begin{bmatrix}
 u_1 u_1' & v_1 u_1' & u_1' & u_1 v_1' & v_1 v_1' & v_1' & u_1 & v_1 & 1 \\
 u_2 u_2' & v_2 u_2' & u_2' & u_2 v_2' & v_2 v_2' & v_2' & u_2 & v_2 & 1 \\
 \vdots & \vdots \\
 u_n u_n' & v_n u_n' & u_n' & u_n v_n' & v_n v_n' & v_n' & u_n & v_n & 1 \\
\end{bmatrix}
\begin{bmatrix}
 f_{11} \\
 f_{12} \\
 f_{13} \\
 f_{21} \\
 f_{22} \\
 f_{23} \\
 f_{31} \\
 f_{32} \\
 f_{33} \\
\end{bmatrix} = 0
\]

- In reality, instead of solving $A\mathbf{f} = 0$, we seek \mathbf{f} to minimize $\|A\mathbf{f}\|$, least eigenvector of $A^T A$.
Structure from motion

\[\Pi_1 X_1 \sim p_{1,1} \]

\[\minimize f(R, T, P) \]
non-linear least squares
Stereo: another view

error

depth
Fig. 5. SSD values versus inverse distance: (a) $B = b$; (b) $B = 2b$; (c) $B = 3b$; (d) $B = 4b$; (e) $B = 5b$; (f) $B = 6b$; (g) $B = 7b$; (h) $B = 8b$. The horizontal axis is normalized such that $8bF = 1$.

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.
Recognition
Face detection

- Do these images contain faces? Where?
Skin classification techniques

Skin classifier

- Given $X = (R,G,B)$: how to determine if it is skin or not?
- Nearest neighbor
 - find labeled pixel closest to X
 - choose the label for that pixel
- Data modeling
 - fit a model (curve, surface, or volume) to each class
- Probabilistic data modeling
 - fit a probability model to each class
The set of faces is a “subspace” of the set of images
- Suppose it is K dimensional
- We can find the best subspace using PCA
- This is like fitting a “hyper-plane” to the set of faces
 - spanned by vectors $v_1, v_2, ..., v_K$
 - any face $x \approx \bar{x} + a_1 v_1 + a_2 v_2 + \ldots + a_k v_k$
Eigenfaces

PCA extracts the eigenvectors of A
 • Gives a set of vectors v_1, v_2, v_3, ...
 • Each one of these vectors is a direction in face space
 – what do these look like?
Viola-Jones Face Detector: Summary

- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade
- 6061 features in final layer
- [Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]
Viola-Jones Face Detector: Results

First two features selected
Bag-of-words models
Histogram of Oriented Gradients (HoG)

[Dalal and Triggs, CVPR 2005]
Support Vector Machines (SVMs)

• Discriminative classifier based on optimal separating line (for 2D case)

• Maximize the margin between the positive and negative training examples

[slide credit: Kristin Grauman]
Vision Contests

- **PASCAL VOC Challenge**

- 20 categories
- Annual classification, detection, segmentation, ... challenges
Binary segmentation

• Suppose we want to segment an image into foreground and background
Binary segmentation as energy minimization

• Define a labeling L as an assignment of each pixel with a 0-1 label (background or foreground)

• Problem statement: find the labeling L that minimizes

$$E(L) = E_d(L) + \lambda E_s(L)$$

match cost smoothness cost

(“how similar is each labeled pixel to the foreground / background?”)
Segmentation by Graph Cuts

Break Graph into Segments

- Delete links that cross between segments
- Easiest to break links that have low cost (similarity)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments
Cuts in a graph

Link Cut
- set of links whose removal makes a graph disconnected
- cost of a cut:

\[
cut(A, B) = \sum_{p \in A, q \in B} c_{p,q}
\]

Find minimum cut
- gives you a segmentation
Cuts in a graph

Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

\[Ncut(A, B) = \frac{cut(A, B)}{volume(A)} + \frac{cut(A, B)}{volume(B)} \]

- volume(A) = sum of costs of all edges that touch A
Light, reflectance, cameras
Radiometry

What determines the brightness of an image pixel?

- Light source properties
- Surface shape
- Surface reflectance properties
- Optics
- Sensor characteristics
- Exposure
Classic reflection behavior

ideal specular

rough specular

Lambertian

from Steve Marschner
Photometric stereo

Can write this as a matrix equation:

\[
\begin{bmatrix}
I_1 \\
I_2 \\
I_3
\end{bmatrix} = k_d \begin{bmatrix}
L_1^T \\
L_2^T \\
L_3^T
\end{bmatrix} N
\]

\[
I_1 = k_d N \cdot L_1 \\
I_2 = k_d N \cdot L_2 \\
I_3 = k_d N \cdot L_3
\]
Example
Creating the ultimate camera

The “analog” camera has changed very little in >100 yrs
 • we’re unlikely to get there following this path

More promising is to combine “analog” optics with computational techniques
 • “Computational cameras” or “Computational photography”

Common themes:
 • take multiple photos
 • modify the camera

Applications: increased field of view, superresolution, better focus, high-dynamic range (HDR)
Questions?

Good luck!