CS4670 / 5670: Computer Vision

Noah Snavely

Lecture 31: Modern recognition

Visual Object Classes Challenge 2009 (VOC2009)

Object detection: where are we?

Credit: Flickr user neilalderney123

- Incredible progress in the last ten years
- Better features, better models, better learning methods, better datasets
- Combination of science and hacks

Vision Contests

PASCAL VOC Challenge

- 20 categories
- Annual classification, detection, segmentation, ... challenges

Machine learning for object detection

- What features do we use?
 - intensity, color, gradient information, ...
- Which machine learning methods?
 - generative vs. discriminative
 - k-nearest neighbors, boosting, SVMs, ...
- What hacks do we need to get things working?

Histogram of Oriented Gradients (HoG)

Histogram of Oriented Gradients (HoG)

- Like SIFT (Scale Invariant Feature Transform), but...
 - Sampled on a dense, regular grid
 - Gradients are contrast normalized in overlapping blocks

[Dalal and Triggs, CVPR 2005]

Histogram of Oriented Gradients (HoG)

- First used for application of person detection [Dalal and Triggs, CVPR 2005]
- Cited since in thousands of computer vision papers

• Find linear function to separate positive and negative examples $\mathbf{x}_i \text{ positive:} \quad \mathbf{x}_i \cdot \mathbf{w} + b \geq 0$ $\mathbf{x}_i \text{ negative:} \quad \mathbf{x}_i \cdot \mathbf{w} + b < 0$

Which line is best?

[slide credit: Kristin Grauman]

Support vector machines

• Want line that maximizes the margin.

 \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

 \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

For support, vectors, $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

[slide credit: Kristin Grauman]

Person detection, ca. 2005

1. Represent each example with a single, fixed HoG template

2. Learn a single [linear] SVM as a detector

(average gradient image, max positive weight, max negative weight)

Detection

- Run detector as a sliding window over an image, at a range of different scales
- Non-maxima suppression

Person detection with HoG & linear SVM

[Dalal and Triggs, CVPR 2005]

Are we done?

 Single, rigid template usually not enough to represent a category

 Many objects (e.g. humans) are articulated, or have parts that can vary in configuration

 Many object categories look very different from different viewpoints, or from instance to instance

Difficulty of representing positive instances

- Discriminative methods have proven very powerful
- But linear SVM on HoG templates not sufficient?
- Alternatives:
 - Parts-based models [Felzenszwalb et al. CVPR 2008]
 - Latent SVMs [Felzenszwalb et al. CVPR 2008]

Parts-based models

Our first innovation involves enriching the Dalal-Triggs model using a star-structured part-based model defined by a "root" filter (analogous to the Dalal-Triggs filter) plus a set of parts filters and associated deformation models.

Felzenszwalb, et al., Discriminatively Trained Deformable Part Models, http://people.cs.uchicago.edu/~pff/latent/

Latent SVMs

- Rather than training a single linear SVM separating positive examples...
- ... cluster positive examples into "components" and train a classifier for each (using all negative examples)

Two-component bicycle model

"side" component

"frontal" component

Six-component car model

side view

frontal view

root filters (coarse)

part filters (fine)

deformation models

