Lecture 31: Modern recognition

Visual Object Classes Challenge 2009 (VOC2009)

Object detection: where are we?

- Incredible progress in the last ten years
- Better features, better models, better learning methods, better datasets
- Combination of science and hacks
Vision Contests

- PASCAL VOC Challenge

- 20 categories
- Annual classification, detection, segmentation, ... challenges

Machine learning for object detection

- What features do we use?
 - intensity, color, gradient information, ...

- Which machine learning methods?
 - generative vs. discriminative
 - k-nearest neighbors, boosting, SVMs, ...

- What hacks do we need to get things working?
Histogram of Oriented Gradients (HoG)

[Dalal and Triggs, CVPR 2005]

HoGify

10x10 cells

20x20 cells

Histogram of Oriented Gradients (HoG)
Histogram of Oriented Gradients (HoG)

• Like SIFT (Scale Invariant Feature Transform), but...
 – Sampled on a dense, regular grid
 – Gradients are contrast normalized in overlapping blocks

[Dalal and Triggs, CVPR 2005]

• First used for application of person detection
 [Dalal and Triggs, CVPR 2005]

• Cited since in thousands of computer vision papers
Linear classifiers

- Find linear function to separate positive and negative examples

\[
x_i \text{ positive: } x_i \cdot w + b \geq 0 \\
x_i \text{ negative: } x_i \cdot w + b < 0
\]

Which line is best?

Support Vector Machines (SVMs)

- Discriminative classifier based on optimal separating line (for 2D case)

- Maximize the margin between the positive and negative training examples

[slide credit: Kristin Grauman]
Support vector machines

- Want line that maximizes the margin.

\[\mathbf{w} \cdot \mathbf{x} + b = \pm 1 \]

\[\mathbf{x}_i, \text{positive (} y_i = 1) : \quad \mathbf{x}_i \cdot \mathbf{w} + b \geq 1 \]

\[\mathbf{x}_i, \text{negative (} y_i = -1) : \quad \mathbf{x}_i \cdot \mathbf{w} + b \leq -1 \]

For support, vectors, \[\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1 \]

[slide credit: Kristin Grauman]

Person detection, ca. 2005

1. Represent each example with a single, fixed HoG template

![HoG template image]

2. Learn a single [linear] SVM as a detector

![SVM output images]

(average gradient image, max positive weight, max negative weight)
Positive and negative examples

+ thousands more...

HoG templates for person detection

+ millions more...
Detection

- Run detector as a sliding window over an image, at a range of different scales
- Non-maxima suppression

Person detection with HoG & linear SVM

[Dalal and Triggs, CVPR 2005]
Are we done?

• Single, rigid template usually not enough to represent a category
 – Many objects (e.g. humans) are articulated, or have parts that can vary in configuration
 – Many object categories look very different from different viewpoints, or from instance to instance

Difficulty of representing positive instances

• Discriminative methods have proven very powerful
• But linear SVM on HoG templates not sufficient?

• Alternatives:
 – Parts-based models [Felzenszwalb et al. CVPR 2008]
 – Latent SVMs [Felzenszwalb et al. CVPR 2008]
Parts-based models

Our first innovation involves enriching the Dalal-Triggs model using a star-structured part-based model defined by a “root” filter (analogous to the Dalal-Triggs filter) plus a set of parts filters and associated deformation models.

Latent SVMs

• Rather than training a single linear SVM separating positive examples...
• ... cluster positive examples into “components” and train a classifier for each (using all negative examples)
Two-component bicycle model

“side” component

“frontal” component

Six-component car model

side view

frontal view

root filters (coarse) | part filters (fine) | deformation models
Six-component person model