CS4670: Computer Vision
Noah Snavely

Image Interpolation

Last time:
This image is too big to fit on the screen. How can we generate a half-sized version?
Upsampling

• This image is too small for this screen: 📷
• How can we make it 10 times as big?
• Simplest approach:
 repeat each row
 and column 10 times
• (“Nearest neighbor interpolation”)

Image interpolation

Recall how a digital image is formed

\[F[x, y] = \text{quantize}\{f(xd, yd)\} \]

• It is a discrete point-sampling of a continuous function
• If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Adapted from: S. Seitz
Recall how a digital image is formed

\[F[x, y] = \text{quantize}\{ f(xd, yd) \} \]

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Adapted from: S. Seitz

• What if we don’t know \(f \)?
 - Guess an approximation: \(\tilde{f} \)
 - Can be done in a principled way: filtering
 - Convert \(F \) to a continuous function:
 \[f_F(x) = F(x_d) \text{ when } x_d \text{ is an integer, } 0 \text{ otherwise} \]
 - Reconstruct by convolution with a reconstruction filter, \(h \)
 \[\tilde{f} = h * f_F \]
Image interpolation

- **sinc(x)**: "Ideal" reconstruction
- **II(x)**: Nearest-neighbor interpolation
- **Λ(x)**: Linear interpolation
- **gauss(x)**: Gaussian reconstruction

Source: B. Curless

Reconstruction filters

- What does the 2D version of this hat function look like?

\[h(x) \] performs linear interpolation
\[h(x, y) \] (tent function) performs bilinear interpolation

Often implemented without cross-correlation

Better filters give better resampled images
- **Bicubic** is common choice

Cubic reconstruction filter
Image interpolation

Original image: x 10

Nearest-neighbor interpolation Bilinear interpolation Bicubic interpolation

Also used for resampling
Raster to Vector Graphics

Depixelating Pixel Art
Questions?