CS4670 / 5670: Computer Vision Noah Snavely

Lecture 36: Course review

Announcements

- Project 5 due tonight, 11:59pm
- Final exam Monday, Dec 10, 9am
- Open-note, closed-book
- Course evals
- http://www.engineering.cornell.edu/CourseEval/

Questions?

Neat Video
\square

Topics - image processing

- Filtering
- Edge detection
- Image resampling / aliasing / interpolation
- Feature detection
- Harris corners
- SIFT
- Invariant features
- Feature matching

Topics - 2D geometry

- Image transformations
- Image alignment / least squares
- RANSAC
- Panoramas

Topics - 3D geometry

- Cameras
- Perspective projection
- Single-view modeling
- Stereo
- Two-view geometry (F-matrices, E-matrices)
- Structure from motion
- Multi-view stereo

Topics - recognition

- Skin detection / probabilistic modeling
- Eigenfaces
- Viola-Jones face detection (cascades / adaboost)
- Bag-of-words models
- Segmentation / graph cuts

Topics - Light, reflectance, cameras

- Light, BRDFS
- Photometric stereo

Image Processing

Linear filtering

- One simple version: linear filtering (cross-correlation, convolution)
- Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

10	5	3
4	6	1
1	1	8

Local image data

kernel

Modified image data

Convolution

- Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
$$

This is called a convolution operation:

$$
G=H * F
$$

- Convolution is commutative and associative

Gaussian Kernel

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

Image gradient

- The gradient of an image: $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid increase in intensity

The edge strength is given by the gradient magnitude:

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

The gradient direction is given by:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

- how does this relate to the direction of the edge?

Finding edges

gradient magnitude

Finding edges

thinning
(non-maximum suppression)

- Solution: filter the image, then subsample

Image interpolation

"Ideal" reconstruction

Linear interpolation
 \rightarrow
\Rightarrow

Image interpolation

Original image: $\times 10$

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

The second moment matrix

The surface $E(u, v)$ is locally approximated by a quadratic form.

$$
B=\sum_{(x, y) \in W} I_{x} I_{y}
$$

$$
C=\sum_{(x, y) \in W} I_{y}^{2}
$$

$$
\begin{aligned}
& E(u, v) \approx A u^{2}+2 B u v+C v^{2} \\
& \approx\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& A=\sum_{(x, y) \in W} I_{x}^{2}
\end{aligned}
$$

The Harris operator

$\lambda_{\text {min }}$ is a variant of the "Harris operator" for feature detection

$$
\begin{aligned}
& f=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \\
= & \frac{\operatorname{determinant}(H)}{\operatorname{trace}(H)}
\end{aligned}
$$

- The trace is the sum of the diagonals, i.e., $\operatorname{trace}(H)=h_{11}+h_{22}$
- Very similar to $\lambda_{\text {min }}$ but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

Laplacian of Gaussian

- "Blob" detector

- Find maxima and minima of LoG operator in space and scale

Scale-space blob detector: Example

sigma $=11.9912$

Feature distance

How to define the difference between two features f_{1}, f_{2} ?

- Better approach: ratio distance $=\left\|f_{1}-f_{2}\right\| /\left\|f_{1}-f_{2}{ }^{\prime}\right\|$
- f_{2} is best SSD match to f_{1} in I_{2}
- f_{2}^{\prime} is $2^{\text {nd }}$ best SSD match to f_{1} in I_{2}
- gives large values for ambiguous matches

I_{1}

2D Geometry

Parametric (global) warping

 $p=(x, y)$

- Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

- What does it mean that T is global?
- Is the same for any point p
- can be described by just a few numbers (parameters)
- Let's consider linear xforms (can be represented by a 2D matrix):

$$
\mathbf{p}^{\prime}=\mathbf{T} \mathbf{p} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

These transformations are a nested set of groups

- Closed under composition and inverse is a member

Projective Transformations aka Homographies aka Planar Perspective Maps

$\mathbf{H}=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & 1\end{array}\right]$
Called a homography

(or planar perspective map)

Inverse Warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=\boldsymbol{T}^{-1}(x, y)$ in $f(x, y)$
- Requires taking the inverse of the transform

Affine transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c \\
d x+e y+f \\
1
\end{array}\right]
$$

Affine transformations

- Matrix form

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
& & & & & \\
& & & & & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{n} & y_{n} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime} \\
y_{n}^{\prime}
\end{array}\right]} \\
& \text { A } \\
& \mathbf{t}_{61}=\mathbf{b}_{2 \times 1}
\end{aligned}
$$

RANSAC

- General version:

1. Randomly choose s samples

- Typically $s=$ minimum sample size that lets you fit a model

2. Fit a model (e.g., line) to those samples
3. Count the number of inliers that approximately fit the model
4. Repeat N times
5. Choose the model that has the largest set of inliers

3D Geometry

Pinhole camera

- Add a barrier to block off most of the rays
- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=} & {\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right) } \\
& \text { divide by third coordinate }
\end{aligned}
$$

This is known as perspective projection

- The matrix is the projection matrix

Projection matrix

$$
\begin{aligned}
& {\left[\begin{array}{l|l}
\mathbf{R} \mid-\mathbf{R c}]
\end{array}\right.} \\
& \text { (} \mathrm{t} \text { in book's notation) } \\
& \boldsymbol{\Pi}=\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}]
\end{aligned}
$$

Point and line duality

- A line I is a homogeneous 3 -vector
- It is \perp to every point (ray) \mathbf{p} on the line: I $\mathbf{p = 0}$

What is the line I spanned by rays $\boldsymbol{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$?

- I is \perp to \mathbf{p}_{1} and $\mathbf{p}_{\mathbf{2}} \Rightarrow \mathbf{I}=\mathbf{p}_{\mathbf{1}} \times \mathbf{p}_{\mathbf{2}}$
- I can be interpreted as a plane normal

What is the intersection of two lines $\mathbf{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$?

- p is \perp to I_{1} and $I_{2} \Rightarrow p=I_{1} \times I_{2}$

Points and lines are dual in projective space

Vanishing points

- Properties
- Any two parallel lines (in 3D) have the same vanishing point \mathbf{v}
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point
- in fact, every image point is a potential vanishing point

Your basic stereo algorithm

For each epipolar line
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

Stereo as energy minimization

- Better objective function

Fundamental matrix

- This epipolar geometry of two views is described by a Very Special 3×3 matrix \mathbf{F}, called the fundamental matrix
- \mathbf{F} maps (homogeneous) points in image 1 to lines in image 2!
- The epipolar line (in image 2) of point \mathbf{p} is: $\mathbf{F p}$
- Epipolar constraint on corresponding points: $\mathbf{q}^{T} \mathbf{F} \mathbf{p}=0$

Epipolar geometry demo

8-point algorithm

$$
\left[\begin{array}{ccccccccc}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\
\vdots & \vdots \\
u_{n} u_{n}^{\prime} & v_{n} u_{n}^{\prime} & u_{n}^{\prime} & u_{n} v_{n}^{\prime} & v_{n} v_{n}^{\prime} & v_{n}^{\prime} & u_{n} & v_{n} & 1
\end{array}\right]\left[\begin{array}{c}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right]=0
$$

- In reality, instead of solving $\mathbf{A f}=0$, we seek \mathbf{f} to minimize $\|\mathbf{A f}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}} \mathbf{A}$.

Fig. 5. SSD values versus inverse distance: (a) $B=b ;$; (b) $B=2 b ;$ (c)
$B=3 b$; (d) $B=4 b$; (c) $B=5 b$; (f) $B=6 b$; (g) $B=7 b ;$ (h) $B=8 b$.
$B=3 b ;(व) B=4$, (e) $B=5 b ;() B=6$
The horizontal axis is normalized such that $8 b F=1$.

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.

Recognition

Face detection

- Do these images contain faces? Where?

Skin classification techniques

Skin classifier

$$
\vec{R}
$$

- Given $X=(R, G, B)$: how to determine if it is skin or not?
- Nearest neighbor
- find labeled pixel closest to X
- choose the label for that pixel
- Data modeling
- fit a model (curve, surface, or volume) to each class
- Probabilistic data modeling
- fit a probability model to each class

Dimensionality reduction

The set of faces is a "subspace" of the set of images

- Suppose it is K dimensional
- We can find the best subspace using PCA
- This is like fitting a "hyper-plane" to the set of faces
- spanned by vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{K}}$
- any face $\mathbf{x} \approx \overline{\mathbf{x}}+a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\ldots+a_{k} \mathbf{v}_{\mathbf{k}}$

Eigenfaces

PCA extracts the eigenvectors of \mathbf{A}

- Gives a set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots$
- Each one of these vectors is a direction in face space
- what do these look like?

Viola-Jones Face Detector: Summary

- Train with 5 K positives, 350M negatives
- Real-time detector using 38 layer cascade
- 6061 features in final layer
- [Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]

Viola-Jones Face Detector: Results

Bag-of-words models

Histogram of Oriented Gradients (HoG)

20×20 cells

Support Vector Machines (SVMs)

- Discriminative classifier based on optimal separating line (for 2D case)
- Maximize the margin between the positive and negative training examples

Vision Contests

- PASCAL VOC Challenge

- 20 categories
- Annual classification, detection, segmentation, ... challenges

Binary segmentation

- Suppose we want to segment an image into foreground and background

Binary segmentation as energy minimization

- Define a labeling L as an assignment of each pixel with a 0-1 label (background or foreground)
- Problem statement: find the labeling L that minimizes

$$
F(I)=\overbrace{\substack{\text { match cost }}}^{\substack{\text { mow similar is each } \\ \text { ("how } \\ \text { labeled pixel to the } \\ \text { foreground / background?") }}}
$$

Segmentation by Graph Cuts

Break Graph into Segments

- Delete links that cross between segments
- Easiest to break links that have low cost (similarity)
- similar pixels should be in the same segments
- dissimilar pixels should be in different segments

Cuts in a graph

Link Cut

- set of links whose removal makes a graph disconnected
- cost of a cut:

$$
\operatorname{cut}(A, B)=\sum_{p \in A, q \in B} c_{p, q}
$$

Find minimum cut

- gives you a segmentation

Cuts in a graph

Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$
N \operatorname{cut}(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{volume}(A)}+\frac{\operatorname{cut}(A, B)}{\operatorname{volume}(B)}
$$

- volume $(A)=$ sum of costs of all edges that touch A

Light, reflectance, cameras

Radiometry

What determines the brightness of an image pixel?

Sensor characteristics

Classic reflection behavior

ideal specular

Photometric stereo

Can write this as a matrix equation:

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=k_{d}\left[\begin{array}{l}
\mathbf{L}_{\mathbf{1}}^{T} \\
\mathbf{L}_{\mathbf{2}}^{T} \\
\mathbf{L}_{\mathbf{3}}^{T}
\end{array}\right] \mathbf{N}
$$

Example

Questions?

Good luck!

