CS4670 / 5670: Computer Vision
Noah Snavely

Lecture 31: Graph-Based Image Segmentation

Announcements

• Project 4 due Friday
• Project 4 artifacts due Monday
• Project demos Monday
 – Signup on CMS soon
Stereo as a minimization problem

\[E(d) = E_d(d) + \lambda E_s(d) \]

- **match cost**: Want each pixel to find a good match in the other image
- **smoothness cost**: Adjacent pixels should (usually) move about the same amount

Related problem: binary segmentation

- Suppose we want to segment an image into foreground and background

- Can you think of a way to solve this problem?
Related problem: binary segmentation

• Suppose we want to segment an image into foreground and background

User sketches out a few strokes on foreground and background...

How do we classify the rest of the pixels?

Binary segmentation as energy minimization

• Define a labeling L as an assignment of each pixel with a 0-1 label (background or foreground)

• Problem statement: find the labeling L that minimizes

$$E(L) = E_d(L) + \lambda E_s(L)$$

- match cost
- smoothness cost

(“how similar is each labeled pixel to the foreground / background?”)
\[E(L) = E_d(L) + \lambda E_s(L) \]

\[E_d(L) = \sum_{(x,y)} C(x, y, L(x, y)) \]

\[\tilde{L}(x, y) \]

\[C(x, y, L(x, y)) = \begin{cases}
\infty & \text{if } L(x, y) \neq \tilde{L}(x, y) \\
C'(x, y, L(x, y)) & \text{otherwise}
\end{cases} \]

\(C'(x, y, 0) \): "distance" from pixel to background pixels
\(C'(x, y, 1) \): "distance" from pixel to foreground pixels

Usually computed by creating a color model from user-labeled pixels
\[E(L) = E_d(L) + \lambda E_s(L) \]

- Neighboring pixels should generally have the same labels
 - Unless the pixels have very different intensities

\[E_s(L) = \sum_{\text{neighbors } (p,q)} w_{pq} |L(p) - L(q)| \]

- \(w_{pq} \): similarity in intensity of \(p \) and \(q \)

Binary segmentation as energy minimization

\[E(L) = E_d(L) + \lambda E_s(L) \]

- For this problem, we can easily find the global minimum!

- Use max flow / min cut algorithm
Graph min cut problem

• Given a weighted graph G with source and sink nodes (s and t), partition the nodes into two sets, S and T such that the sum of edge weights spanning the partition is minimized
 – and $s \in S$ and $t \in T$

Segmentation by min cut

• Graph
 – node for each pixel, link between adjacent pixels
 – specify a few pixels as foreground and background
 • create an infinite cost link from each bg pixel to the t node
 • create an infinite cost link from each fg pixel to the s node
 • create finite cost links from s and t to each other node
 – compute min cut that separates s from t
 • The min-cut max-flow theorem [Ford and Fulkerson 1956]
Segmentation by min cut

- The partitions S and T formed by the min cut give the optimal foreground and background segmentation
- I.e., the resulting labels minimize

$$E(d) = E_d(d) + \lambda E_s(d)$$
Is user-input required?

Our visual system is proof that automatic methods are possible
 • classical image segmentation methods are automatic

Argument for user-directed methods?
 • only user knows desired scale/object of interest

Automatic graph cut [Shi & Malik]

Fully-connected graph
 • node for every pixel
 • link between every pair of pixels, \(p,q \)
 • cost \(c_{pq} \) for each link
 - \(c_{pq} \) measures similarity
 » similarity is inversely proportional to difference in color and position
Segmentation by Graph Cuts

Break Graph into Segments
- Delete links that cross between segments
- Easiest to break links that have low cost (similarity)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Cuts in a graph

Link Cut
- set of links whose removal makes a graph disconnected
- cost of a cut:
 \[\text{cut}(A, B) = \sum_{p \in A, q \in B} c_{p,q} \]

Find minimum cut
- gives you a segmentation
But min cut is not always the best cut...

Cuts in a graph

Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

\[N_{cut}(A, B) = \frac{cut(A, B)}{volume(A)} + \frac{cut(A, B)}{volume(B)} \]

- \(volume(A) \) = sum of costs of all edges that touch A
Interpretation as a Dynamical System

Treat the links as springs and shake the system

• elasticity proportional to cost
• vibration “modes” correspond to segments
 – can compute these by solving an eigenvector problem
 – [link to paper](http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf)
Color Image Segmentation

Questions?