CS4670/5670: Intro to Computer Vision
Noah Snavely

Lecture 27: Eigenfaces

Announcements

* Project 4 has been released, due Friday,
November 16 at 11:59pm

— Please get started early!

* Quiz on Friday
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Linear subspaces
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Classification can be expensive
* Must either search (e.g., nearest neighbors) or store large PDF’s
Suppose the data points are arranged as above
» ldea—fit a line, classifier measures distance to line
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Dimensionality reduction
* We can represent the orange points with only their v, coordinates
— since v, coordinates are all essentially O
» This makes it much cheaper to store and compare points
» Abigger deal for higher dimensional problems
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Linear subspaces

G Consider the variation along direction v
L] H .
e o o ® among all of the orange points:
T is the mean o °
° o — =\T 2
ggitnhtes orange o, Uy Oy N ° var(v) = Z ||(X - X) : V||
° orange point X
° .Z'O'M)l ° R ge p
L[] o O_— . e
o o & o o ° What unit vector v minimizes var?
o .
OOO e * ° . vo = miny {var(v)}
[ BN ) . .
. ® o o What unit vector v maximizes var?
o o vi1 = maxvy {var(v)}
R

var(v) = Y [[x==)"-v|7?

ZVT(X —)x-x)Tv

vT Sx—-x)(x— T v

X

= vFAv where A = Sx—x)(x— x)T
X

Solution: v, is eigenvector of A with largest eigenvalue
Vv, is eigenvector of A with smallest eigenvalue

Principal component analysis

Suppose each data point is N-dimensional
* Same procedure applies:

var(v) = Y [x-%T v|

= vFAv where A = Z(X —%)(x-%)7T
X

» The eigenvectors of A define a new coordinate system

— eigenvector with largest eigenvalue captures the most variation among
training vectors x

— eigenvector with smallest eigenvalue has least variation
* We can compress the data by only using the top few eigenvectors
— corresponds to choosing a “linear subspace”
» represent points on a line, plane, or “hyper-plane”
— these eigenvectors are known as the principal components
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The space of faces

An image is a point in a high dimensional space
« An N x M intensity image is a point in RNM
* We can define vectors in this space as we did in the 2D case

Dimensionality reduction

The set of faces is a “subspace” of the set of images
* Suppose it is K dimensional
* We can find the best subspace using PCA
« This is like fitting a “hyper-plane” to the set of faces
— spanned by vectors vq, v,, ..., Vg
— anyface x ® X+ a1vy + axve + ...+ apvy
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Eigenfaces

PCA extracts the eigenvectors of A
» Gives a set of vectors vq, vy, Vg, ...
» Each one of these vectors is a direction in face space
— what do these look like?

Projecting onto the eigenfaces

The eigenfaces v, ..., v span the space of faces
» Aface is converted to eigenface coordinates by

x> ((x=%) vy, x=%) vg,..., (x—X) vK)
. ~ J . ~ J —
ai an K

X~X+a1vy +axve+ ... +agvk \

a1Vy apV9y a3V3 a4VvV4 as5Vy agVeg a7Vy agvs
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Detection and recognition with eigenfaces

Algorithm
1. Process the image database (set of images with labels)
¢ Run PCA—compute eigenfaces
« Calculate the K coefficients for each image
2. Given a new image (to be recognized) x, calculate K coefficients

x = (a1,a2,...,0K)

3. Detectif xis a face

Ix — (X4 ai1vy 4+ axva+ ...+ agvk)| < threshold

4. Ifitis aface, who is it?
» Find closest labeled face in database
* nearest-neighbor in K-dimensional space

Choosing the dimension K

eigenvalues ;

i= K NM

How many eigenfaces to use?

Look at the decay of the eigenvalues

+ the eigenvalue tells you the amount of variance “in the
direction” of that eigenface

+ ignore eigenfaces with low variance
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Issues: metrics

What's the best way to compare images?
» need to define appropriate features
» depends on goal of recognition task

—INLL
ﬂ g e
| § gi
exact matching classification/detection
complex features work well simple features work well
(SIFT, MOPS, etc.) (Viola/Jones, etc.)

Metrics

Lots more feature types that we haven’'t mentioned
* moments, statistics
— metrics: Earth mover’s distance, ...
* edges, curves
— metrics: Hausdorff, shape context, ...
+ 3D: surfaces, spin images
— metrics: chamfer (ICP)
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Issues: feature selection

If all you have is one image: If you have a training set of images:
non-maximum suppression, etc. AdaBoost, etc.

Issues: data modeling

Generative methods

* model the “shape” of each class
— histograms, PCA, mixtures of Gaussians
— graphical models (HMM'’s, belief networks, etc.)

Discriminative methods
* model boundaries between classes
— perceptrons, neural networks
— support vector machines (SVM’s)
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Generative vs. Discriminative
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Discriminative Approach
model posterior directly

Issues: dimensionality

What if your space isn’t flat?
+ PCA may not help

Nonlinear methods
LLE, MDS, etc.
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Moving forward
* Faces are pretty well-behaved

— Mostly the same basic shape
— Lie close to a low-dimensional subspace

* Not all objects are as nice

Different appearance, similar parts
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