CS6670: Computer Vision

Noah Snavely

Lecture 22: Structure from motion

Readings

• Szeliski, Chapter 7.1 – 7.4

Road map

- What we've seen so far:
 - Low-level image processing: filtering, edge detecting, feature detection
 - Geometry: image transformations, panoramas, singleview modeling Fundamental matrices
- What's next:
 - Finishing up geometry
 - Recognition
 - Image formation

Back to image filter

Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).

Total reconstruction time: 23 hours

Number of cores: 352

Structure from motion

- Given many images, how can we
 - a) figure out where they were all taken from?
 - b) build a 3D model of the scene?

This is (roughly) the structure from motion problem

Structure from motion

- Input: images with points in correspondence $p_{i,j} = (u_{i,j}, v_{i,j})$
- Output
 - structure: 3D location \mathbf{x}_i for each point p_i
 - motion: camera parameters \mathbf{R}_i , \mathbf{t}_i possibly \mathbf{K}_i
- Objective function: minimize reprojection error

Also doable from video

What we've seen so far...

- 2D transformations between images
 - Translations, affine transformations, homographies...
- Fundamental matrices
 - Still represent relationships between 2D images
- What's new: Explicitly representing 3D geometry of cameras and points

Camera calibration and triangulation

- Suppose we know 3D points
 - And have matches between these points and an image
 - How can we compute the camera parameters?
- Suppose we have know camera parameters, each of which observes a point
 - How can we compute the 3D location of that point?

Structure from motion

- SfM solves both of these problems at once
- A kind of chicken-and-egg problem
 - (but solvable)

Photo Tourism

First step: how to get correspondence?

Feature detection and matching

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair

Problem size

- What are the variables?
- How many variables per camera?
- How many variables per point?
- Trevi Fountain collection
 466 input photos
 - + > 100,000 3D points
 - = very large optimization problem

Structure from motion

• Minimize sum of squared reprojection errors:

- Minimizing this function is called bundle adjustment
 - Optimized using non-linear least squares,
 e.g. Levenberg-Marquardt

Is SfM always uniquely solvable?

Is SfM always uniquely solvable?

• No...

