Announcements

- Project 3 due Thursday by 11:59pm
- Demos on Friday; signup on CMS
- Prelim to be distributed in class Friday, due Wednesday by the beginning of class
- No late exams accepted

Lines and points

- See board
- Homographies map lines to lines
- Homographies map points to points
- Is there anything that maps a point to a line?

A couple important things...

- Homogeneous points
- How do you represent a point at infinity?
- How many points at infinity are there?
- What is a vanishing line?
- What are the parameters of a camera?
- What does the K matrix mean?
- Another way to fit a line to a set of points?

Questions?

CS4670 / 5670 : Computer Vision

 Noah SnavelyLecture 20: Two-view geometry

Readings

- Szeliski, Chapter 7.2
- "Fundamental matrix song"

Back to stereo

- Where do epipolar lines come from?

Two-view geometry

- Where do epipolar lines come from?

Fundamental matrix

- This epipolar geometry of two views is described by a Very Special 3×3 matrix \mathbf{F}, called the fundamental matrix
- \mathbf{F} maps (homogeneous) points in image 1 to lines in image 2!
- The epipolar line (in image 2) of point \mathbf{p} is: $\mathbf{F p}$
- Epipolar constraint on corresponding points: $\mathbf{q}^{T} \mathbf{F} \mathbf{p}=0$

Fundamental matrix

- Two Special points: \mathbf{e}_{1} and \mathbf{e}_{2} (the epipoles): projection of one camera into the other

Fundamental matrix

- Two special points: \mathbf{e}_{1} and \mathbf{e}_{2} (the epipoles): projection of one camera into the other
- All of the epipolar lines in an image pass through the epipole

Rectified case

- Images have the same orientation, t parallel to image planes
- Where are the epipoles?

Epipolar geometry demo

Relationship with homography?

Images taken from the same center of projection? Use a homography!

Fundamental matrix - uncalibrated case

\mathbf{K}_{1} : intrinsics of camera 1 $\quad \mathbf{K}_{2}$: intrinsics of camera 2
R : rotation of image 2 w.r.t. camera 1
$\mathbf{q}^{T} \underbrace{\mathbf{K}_{2}^{-T} \mathbf{R}[\mathbf{t}]_{\times} \mathbf{K}_{1}^{-1} \mathbf{p}=0}_{1}$
$\mathbf{F} \longleftarrow$ the Fundamental matrix

Cross-product as linear operator

Useful fact: Cross product with a vector \mathbf{t} can be represented as multiplication with a (skew-symmetric) 3×3 matrix

$$
\begin{aligned}
{[\mathrm{t}]_{\times} } & =\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t_{y} & t_{x} & 0
\end{array}\right] \\
\mathbf{t} & \times \tilde{\mathbf{p}}=[\mathbf{t}]_{\times} \tilde{\mathbf{p}}
\end{aligned}
$$

Fundamental matrix - calibrated case

$$
\begin{aligned}
& \tilde{\mathbf{p}}=\mathbf{K}_{1}^{-1} \mathbf{p} \quad \text { : ray through } \mathbf{p} \text { in camera 1's (and world) coordinate system } \\
& \tilde{\mathbf{q}}=\mathbf{K}_{2}^{-1} \mathbf{q} \quad \text { : ray through } \mathbf{q} \text { in camera 2's coordinate system } \\
&
\end{aligned}
$$

Properties of the Fundamental Matrix

- $\mathbf{F p}$ is the epipolar line associated with \mathbf{p}
- $\mathbf{F}^{T} \mathbf{q}$ is the epipolar line associated with \mathbf{q}
- $\mathbf{F e}_{1}=\mathbf{0}$ and $\mathbf{F}^{T} \mathbf{e}_{2}=\mathbf{0}$
- \mathbf{F} is rank 2
- How many parameters does \mathbf{F} have?

Rectified case

$$
\mathbf{R}=\mathbf{I}_{3 \times 3}
$$

$$
\mathbf{t}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T}
$$

$\mathbf{E}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$

Stereo image rectification

- reproject image planes onto a common
plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- two homographies (3×3 transform), one for each input image reprojection
> C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Questions?

Estimating F

- If we don't know $\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{R}$, or \mathbf{t}, can we estimate \mathbf{F} for two images?
- Yes, given enough correspondences

Estimating F - 8-point algorithm

- The fundamental matrix F is defined by

$$
\mathbf{x}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x}=0
$$

for any pair of matches x and x^{\prime} in two images.

- Let $x=(u, v, 1)^{\top}$ and $x^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)^{\top}$,

$$
\mathbf{F}=\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]
$$

each match gives a linear equation
$u^{\prime} f_{11}+v u^{\prime} f_{12}+u^{\prime} f_{13}+u v^{\prime} f_{21}+v v^{\prime} f_{22}+v^{\prime} f_{23}+u f_{31}+v f_{32}+f_{33}=0$

8-point algorithm

$$
\left[\begin{array}{ccccccccc}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\
\vdots & \vdots \\
u_{n} u_{n}^{\prime} & v_{n} u_{n}^{\prime} & u_{n}^{\prime} & u_{n} v_{n}^{\prime} & v_{n} v_{n}^{\prime} & v_{n}^{\prime} & u_{n} & v_{n} & 1
\end{array}\right]\left[\begin{array}{c}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right]=0
$$

- In reality, instead of solving $\mathbf{A f}=0$, we seek \mathbf{f} to minimize $\|\mathbf{A f}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}} \mathbf{A}$.

8-point algorithm - Problem?

- F should have rank 2
- To enforce that \mathbf{F} is of rank 2, F is replaced by F^{\prime} that minimizes $\left\|\mathbf{F}-\mathbf{F}^{\prime}\right\|$ subject to the rank constraint.
- This is achieved by SVD. Let $\mathbf{F}=\mathbf{U} \Sigma \mathbf{V}$, ${ }^{\mathrm{T}}$ where

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right] \text {, let } \quad \Sigma^{\prime}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

then $\mathbf{F}^{\prime}=\mathbf{U} \Sigma^{\prime} \mathbf{V}^{\mathrm{T}}$ is the solution.

8-point algorithm

\% Build the constraint matrix

$$
\begin{aligned}
& \text { A = [x2(1,:):**x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ... } \\
& \text { x2(2,:)'.*x1(1,::)' x2(2,::)'.*x1(2,::)' x2(2,::) } \ldots \\
& x 1(1,:)^{\prime} \quad x 1(2,:)^{\prime} \quad \text { ones(npts,1)]; } \\
& {[\mathrm{U}, \mathrm{D}, \mathrm{~V}]=\operatorname{svd}(\mathrm{A}) ;}
\end{aligned}
$$

\% Extract fundamental matrix from the column of V
$\%$ corresponding to the smallest singular value.

$$
\mathrm{F}=\text { reshape }(\mathrm{V}(:, 9), 3,3)^{\prime} ;
$$

\% Enforce rank2 constraint

$$
[\mathrm{U}, \mathrm{D}, \mathrm{~V}]=\operatorname{svd}(\mathrm{F}) ;
$$

$\mathrm{F}=\mathrm{U}^{*} \operatorname{diag}([\mathrm{D}(1,1) \mathrm{D}(2,2) 0])^{*} \mathrm{~V}^{\prime} ;$

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise

Results (ground truth)

Results (normalized 8-point algorithm)

What about more than two views?

- The geometry of three views is described by a $3 \times 3 \times 3$ tensor called the trifocal tensor
- The geometry of four views is described by a $3 \times 3 \times 3 \times 3$ tensor called the quadrifocal tensor
- After this it starts to get complicated...

Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours
Number of cores: 352

