CS4670 / 5670 : Computer Vision Noah Snavely

Lecture 18: Single-view modeling, Part 2

Announcements

- Project 3 due this **Thursday** by 11:59pm
 - Demos on Friday (?)
- Project 3 artifacts due this **Friday** by 11:59pm
- Take-home prelim out Friday, due Wednesday 10/24 by the beginning of class
 - Please don't post on Piazza about the prelim, just email the staff

Quiz from last time

- How do you compute the image-space line I passing through two points p and q?
- How do you compute the image-space point p at the intersection of two lines I and m?

Measuring height without a ruler

Compute Z from image measurements

• Need more than vanishing points to do this

The cross ratio

- A Projective Invariant
 - Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

$$\mathbf{P}_{i} = \begin{bmatrix} X_{i} \\ Y_{i} \\ Z_{i} \\ 1 \end{bmatrix}$$

Can permute the point ordering

$$\frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|}$$

• 4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

3D Modeling from a photograph

St. Jerome in his Study, H. Steenwick

3D Modeling from a photograph

3D Modeling from a photograph

Flagellation, Piero della Francesca

3D Modeling from a photograph

video by Antonio Criminisi

3D Modeling from a photograph

