CS6670: Computer Vision

 Noah Snavely
Lecture 15: Single-view modeling

Project 3 Overview

- Due Oct 18
- Teams of 2 students
- Concepts covered in lectures 12 (Ransac), 15 (Panoramas)

stitch2.txt

// Warp two of the half-resolution inpu // usage: project2 sphrWarp input.tga o Panorama sphrWarp pano1_0008.tga warp08 Panorama sphrWarp pano1_0009.tga warp09
// Generate features for the two images Features computeFeatures warp08.tga war
 Features computeFeatures warp09.tga warp09.f
// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2
//Alion the nairs usind feature matchind:
danielcabrinihauaggeepch imagess Panorama alignPair warpe8.sift warpe9.sift match-08-09.txt 2081 sift num inliers: $371 / 456$
$1.000000 \mathrm{e}+00 \quad 0.000000 \mathrm{e}+60-2.080674 \mathrm{e}+020.000000 \mathrm{e}+60 \quad 1.000080 \mathrm{e}+00-4.948787 \mathrm{e}+00 \quad 0.000000 \mathrm{e}+00 \quad 0.060000 \mathrm{e}+00 \quad 1.000000 \mathrm{e}$
// ** NOTE: if using SIFT features and matches for debugging, use:
// Finally, blend these tw ϕ images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from revious command was saved in pairlist2.txt Panorama blendPairs pairlist2.txt stitch2.tga 200
// Warp two of the half-resolution inpu // usage: project2 sphrWarp input.tga o Panorama sphrWarp pano1_0008.tga warp08 Panorama sphrWarp pano1_0009.tga warp09
// Generate features for the two images Features computeFeatures warp08.tga war

Features computeFeatures warp09.tga warp09.f
// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2
// Alion the nairs usind feature matchind:
danielcabrinihauaggeeDCH images§ Panorama alignPair warpe8.sift warp09.sift match-08-09.txt 200 i sift num inliers: 371 / 456
$1.000000 \mathrm{e}+00 \quad 0.000000 \mathrm{e}+60-2.080674 \mathrm{e}+020.000000 \mathrm{e}+60 \quad 1.000006 \mathrm{e}+60 \quad-4.948787 \mathrm{e}+00 \quad 0.000000 \mathrm{e}+60 \quad 0.000806 \mathrm{e}+00 \quad 1.000000 \mathrm{e}$

TODO1: Spherical Warping

input
$f=200$ (pixels)

TODO1: Spherical Warping

input
$\mathbf{f}=\mathbf{2 0 0}$ (pixels)

TODO1: Radial Distortion

CFloatImage WarpSphericalField(CShape srcSh, CShape dstSh, float f,

 float k1, float k2, const CTransform3x3 \&r)\{
// Set up the pixel coordinate image
dstSh.nBands = 2;
CFloatImage uvImg(dstSh); // (u,v) co
CVector3 p;

```
p[0] = sin(0.0) * cos(0.0);
p[1] = sin(0.0);
p[2] = cos(0.0) * cos(0.0);
p = r * p;
double min_y = p[1];
```

// Fill in the values
for (int $\mathrm{y}=0$; y < dstSh.height; $\mathrm{y}++$) \{
float *uv = \&uvImg. Pixel(0, y, 0);
for (int $x=0$; $x<d s t S h . w i d t h ; ~ x++, ~ u v ~+=~ 2) ~\{~$
// (x, y) is the spherical image coordinates.
// (xf,yf) is the spherical coordinates, e.g., xf is the angle theta
// and yf is the angle phi
float xf = (float) ((x - 0.5f*dstSh.width) / f);
float yf = (float) ((y - 0.5f*dstSh.height) / f - min_y);
// (xt,yt,zt) are intermediate coordinates to which you can
// apply the spherical correction and radial distortion
float xt, yt;
CVector3 p;
// BEGIN TODO
// END TODO
// Convert back to regular pixel coordinates and store
float $x n=0.5 f * s r c S h . w i d t h ~+x t * f ;$
float yn = 0.5f*srcSh. height + yt*f;
$\mathrm{uv}[0]=\mathrm{xn}$;
$\operatorname{uv}[1]=\mathrm{vn}$.

TODO2: RANSAC

```
procedure RANSAC
n_inliers_best := 0
for nRANSAC rounds do
{
    p := random subset of points
    m := fit model using points p
    n_inliers := count inliers given model m
        if n_inliers > n_inliers_best
        {
            n_inliers_best := n_inliers
            m_best := m
        }
}
m_final := least squares fit of m with all
    inliers to m_best
```


TODO2: RANSAC

```
procedure RANSAC
n_inliers_best := 0
for nRANSAC rounds do
{
    p := random subset of points
    m := fit model using points p
    n_inliers := count inliers given model m
        if n_inliers > n_inliers_best
        {
            n_inliers_best := n_inliers
            m_best := m
        }
}
m_final := least squares fit of m with all
        inliers to m_best
```


TODO2: RANSAC

```
procedure RANSAC
n_inliers_best := 0
for nRANSAC rounds do
{
    p := random subset of points
    m := fit model using points p
    n_inliers := count inliers given model m
        if n_inliers > n_inliers_best
        {
            n_inliers_best := n_inliers
            m_best := m
        }
}
m_final := least squares fit of m with all
        inliers to m_best
```


TODO2: RANSAC

```
procedure RANSAC
```

\qquad

```
            int alignPair(const FeatureSet &f1,
                                    const vector<FeatureMatch
                                    int nRANSAC, double RANSA
n_inliers_best := 0
for nRANSAC rounds do
{
    p := random subset of points
    m := fit model using points p
    n_inliers := count inliers given model m @ . int countInliers(const FeatureSet &f1,
                            const vector<FeatureMa
        if n_inliers > n_inliers_best
        {
            n_inliers_best := n_inliers
            m_best := m
        }
}
m_final := least squares fit of m with all
        inliers to m_best
```


TODO2: RANSAC

```
procedure RANSAC
    .-@in
        int alignPair(const FeatureSet &f1,
                            const vector<FeatureMatch
                                int nRANSAC, double RANSA
n_inliers_best := 0
for nRANSAC rounds do
{
    p := random subset of points
    m := fit model using points p
    n_inliers := count inliers given model m @ . int countInliers(const FeatureSet &f1,
                            const vector<FeatureMa
                            CTransform3x3 M, double
        if n_inliers > n_inliers_best
        {
            n_inliers_best := n_inliers
            m_best := m
    }
}
m_final := least squares fit of m with all ` int leastSquaresFit(const FeatureSet &f
        inliers to m_best

\section*{TODO3: Image Blending}

CByteImage BlendImages(CImagePositionV\& ipv, float blendWidth)

Part1: Figure out the bounding box of the composite Will have to reproject image corners using transforms

\begin{tabular}{l|} 
\\
\hline
\end{tabular}
(x_min, y_min)

\section*{TODO3: Image Blending}
static void AccumulateBlend(CByteImage\& img, CFloatImage\& acc, CTransform3x3 M, float blendWidth)
For linear interpolation of pixel values you can use the method
```

double CImageOf<T>::PixelLerp(double x, double y, int band)

```


Dark strip in image
static void NormalizeBlend(CFloatImage\& acc, CByteImage\& img)
divides composite by total weight to get range values back to \([0,1]\)

\section*{TODO3: Image Blending}
- Final step: drift correction

- Solution
- add another copy of first image at the end
- this gives a constraint: \(\mathrm{y}_{\mathrm{n}}=\mathrm{y}_{1}\)
- there are a bunch of ways to solve this problem
- add displacement of \(\left(y_{1}-y_{n}\right) /(n-1)\) to each image after the first
- apply an affine warp: \(y^{\prime}=y+a x\) [you will implement this for P3]
- run a big optimization problem, incorporating this constraint
- best solution, but more complicated
- known as "bundle adjustment"

\section*{Projective geometry}


Ames Room
- Readings
- Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press,
Cambridge, MA, 1992, (read 23.1-23.5, 23.10)
- available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

\section*{Projective geometry-what's it good for?}
- Uses of projective geometry
- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Camera pose estimation
- Object recognition


Paolo Uccello

\section*{Applications of projective geometry}


Vermeer's Music Lesson


Reconstructions by Criminisi et al.

\section*{Measurements on planes}


\section*{Measurements on planes}


\section*{Measurements on planes}


Approach: unwarp then measure

\section*{Point and line duality}
- A line I is a homogeneous 3-vector - It is \(\perp\) to every point (ray) \(\mathbf{p}\) on the line:

I p=0


\section*{Point and line duality}
- A line I is a homogeneous 3-vector - It is \(\perp\) to every point (ray) \(\mathbf{p}\) on the line:


What is the line \(\mathbf{I}\) spanned by rays \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2}\) ?

\section*{Point and line duality}
- A line I is a homogeneous 3-vector - It is \(\perp\) to every point (ray) \(\mathbf{p}\) on the line:


What is the line \(\mathbf{I}\) spanned by rays \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2}\) ?
- \(\mathbf{I}\) is \(\perp\) to \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2} \Rightarrow \mathbf{I}=\mathbf{p}_{1} \times \mathbf{p}_{2}\)

\section*{Point and line duality}
- A line I is a homogeneous 3-vector - It is \(\perp\) to every point (ray) \(\mathbf{p}\) on the line:


What is the line \(\mathbf{I}\) spanned by rays \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2}\) ?
- I is \(\perp\) to \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2} \Rightarrow \mathbf{I}=\mathbf{p}_{1} \times \mathbf{p}_{2}\)
- I can be interpreted as a plane normal

\section*{Point and line duality}
- A line I is a homogeneous 3-vector - It is \(\perp\) to every point (ray) \(\mathbf{p}\) on the line:


What is the line \(\mathbf{I}\) spanned by rays \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2}\) ?
- I is \(\perp\) to \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2} \Rightarrow \mathbf{I}=\mathbf{p}_{1} \times \mathbf{p}_{2}\)
- I can be interpreted as a plane normal

\section*{Point and line duality}
- A line I is a homogeneous 3-vector
- It is \(\perp\) to every point (ray) \(\mathbf{p}\) on the line:


What is the line \(\mathbf{I}\) spanned by rays \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2}\) ?
- \(\mathbf{I}\) is \(\perp\) to \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2} \Rightarrow \mathbf{I}=\mathbf{p}_{1} \times \mathbf{p}_{2}\)
- I can be interpreted as a plane normal

\section*{Point and line duality}
- A line I is a homogeneous 3-vector
- It is \(\perp\) to every point (ray) \(\mathbf{p}\) on the line:


What is the line \(\mathbf{I}\) spanned by rays \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2}\) ?
- \(\mathbf{I}\) is \(\perp\) to \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2} \Rightarrow \mathbf{I}=\mathbf{p}_{1} \times \mathbf{p}_{2}\)
- I can be interpreted as a plane normal What is the intersection of two lines \(\mathbf{I}_{\mathbf{1}}\) and \(\mathbf{I}_{\mathbf{2}}\) ?

\section*{Point and line duality}
- A line I is a homogeneous 3-vector
- It is \(\perp\) to every point (ray) \(\mathbf{p}\) on the line:
\(\mathbf{P}=0\)


What is the line \(\mathbf{I}\) spanned by rays \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2}\) ?
- \(\mathbf{I}\) is \(\perp\) to \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2} \Rightarrow \mathbf{I}=\mathbf{p}_{1} \times \mathbf{p}_{2}\)
- I can be interpreted as a plane normal What is the intersection of two lines \(\mathbf{I}_{\mathbf{1}}\) and \(\mathbf{I}_{\mathbf{2}}\) ?
- \(p\) is \(\perp\) to \(I_{1}\) and \(I_{2} \Rightarrow p=I_{1} \times I_{2}\)

\section*{Point and line duality}
- A line I is a homogeneous 3-vector
- It is \(\perp\) to every point (ray) \(\mathbf{p}\) on the line:
\(\mathbf{P O}\)


What is the line \(I\) spanned by rays \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2}\) ?
- \(\mathbf{I}\) is \(\perp\) to \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2} \Rightarrow \mathbf{I}=\mathbf{p}_{1} \times \mathbf{p}_{2}\)
- I can be interpreted as a plane normal What is the intersection of two lines \(\mathbf{I}_{1}\) and \(\mathbf{I}_{2}\) ?
\(\cdot p\) is \(\perp\) to \(I_{1}\) and \(I_{2} \Rightarrow p=I_{1} \times I_{2}\)
Points and lines are dual in projective space

\section*{Ideal points and lines}


\section*{Ideal points and lines}

- Ideal point ("point at infinity")
\(-p \cong(x, y, 0)\) - parallel to image plane
- It has infinite image coordinates

\section*{Ideal points and lines}

- Ideal point ("point at infinity")
\(-p \cong(x, y, 0)\) - parallel to image plane
- It has infinite image coordinates

Ideal line
- \(I \cong(a, b, 0)\) - parallel to image plane

\section*{Ideal points and lines}

- Ideal point ("point at infinity")
\(-p \cong(x, y, 0)-\) parallel to image plane
- It has infinite image coordinates

Ideal line
- \(I \cong(a, b, 0)\) - parallel to image plane

\section*{Ideal points and lines}

- Ideal point ("point at infinity")
\(-p \cong(x, y, 0)\) - parallel to image plane
- It has infinite image coordinates

Ideal line
- \(I \cong(a, b, 0)\) - parallel to image plane
- Corresponds to a line in the image (finite coordinates)
- goes through image origin (principle point)

3D projective geometry

\section*{3D projective geometry}
- These concepts generalize naturally to 3D
- Homogeneous coordinates
- Projective 3D points have four coords: \(\mathbf{P}=\) (X,Y,Z,W)

\section*{3D projective geometry}
- These concepts generalize naturally to 3D
- Homogeneous coordinates
- Projective 3D points have four coords: \(\mathbf{P}=\) (X,Y,Z,W)
- Duality

\section*{3D projective geometry}
- These concepts generalize naturally to 3D
- Homogeneous coordinates
- Projective 3D points have four coords: \(\mathbf{P}=\) (X,Y,Z,W)
- Duality
- A plane \(\mathbf{N}\) is also represented by a 4 -vector

\section*{3D projective geometry}
- These concepts generalize naturally to 3D
- Homogeneous coordinates
- Projective 3D points have four coords: \(\mathbf{P}=\) (X,Y,Z,W)
- Duality
- A plane \(\mathbf{N}\) is also represented by a 4 -vector
- Points and planes are dual in 3D: \(\mathbf{N} \mathbf{P}=0\)

\section*{3D projective geometry}
- These concepts generalize naturally to 3D
- Homogeneous coordinates
- Projective 3D points have four coords: \(\mathbf{P}=\) (X,Y,Z,W)
- Duality
- A plane \(\mathbf{N}\) is also represented by a 4 -vector
- Points and planes are dual in 3D: N \(\mathbf{P}=0\)
- Three points define a plane, three planes define a point

\section*{3D to 2D: perspective projection}

Projection: \(\quad \mathbf{p}=\left[\begin{array}{c}w x \\ w y \\ w\end{array}\right]=\left[\begin{array}{llll}* & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]=\mathbf{Đ P}\)

\section*{Vanishing points (1D)}

ground plane

\section*{Vanishing points (1D)}


\section*{Vanishing points (1D)}


\section*{Vanishing points (1D)}

- Vanishing point
- projection of a point at infinity
- can often (but not always) project to a finite point in the image

\section*{Vanishing points (1D)}

- Vanishing point
- projection of a point at infinity
- can often (but not always) project to a finite point in the image

\author{
camera o center
}

\author{
image plane-
}






\section*{Vanishing points}


\section*{Vanishing points}


\section*{Vanishing points}

- Properties
- Any two parallel lines (in 3D) have the same vanishing point \(\mathbf{v}\)

\section*{Vanishing points}

- Properties
- Any two parallel lines (in 3D) have the same vanishing point \(\mathbf{v}\)
- The ray from \(\mathbf{C}\) through \(\mathbf{v}\) is parallel to the lines

\section*{Vanishing points}

- Properties
- Any two parallel lines (in 3D) have the same vanishing point \(\mathbf{v}\)
- The ray from \(\mathbf{C}\) through \(\mathbf{v}\) is parallel to the lines
- An image may have more than one vanishing point
- in fact, every image point is a potential vanishing point

\section*{Two point perspective}


\section*{Two point perspective}


\section*{Three point perspective}


\section*{Vanishing lines}


\section*{Vanishing lines}

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point

\section*{Vanishing lines}

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line

\section*{Vanishing lines}

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line

\section*{Vanishing lines}

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes (can) define different vanishing lines

\section*{Vanishing lines}

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes (can) define different vanishing lines

\section*{Computing vanishing points \\ }

\section*{Computing vanishing points}

\[
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right]
\]

\section*{Computing vanishing points}

\(\mathbf{P}=\mathbf{P}_{0}+t \mathbf{D}\)
\[
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right] \quad t \rightarrow \infty \quad \mathbf{P}_{\infty} \cong\left[\begin{array}{c}
D_{X} \\
D_{Y} \\
D_{Z} \\
0
\end{array}\right]
\]

\section*{Computing vanishing points}

\(\mathbf{P}=\mathbf{P}_{0}+t \mathbf{D}\)
\[
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right] \quad t \rightarrow \infty \quad \mathbf{P}_{\infty} \cong\left[\begin{array}{c}
D_{X} \\
D_{Y} \\
D_{Z} \\
0
\end{array}\right]
\]
- Properties \(\mathbf{v}=\) ®P \(_{\infty}\)

\section*{Computing vanishing points \\  \\ \(\mathbf{P}=\mathbf{P}_{0}+t \mathbf{D}\) \\ \[
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right] \quad t \rightarrow \infty
\] \\ \[
\mathbf{P}_{\infty} \cong\left[\begin{array}{c}
D_{X} \\
D_{Y} \\
D_{Z} \\
0
\end{array}\right]
\]}
- Properties \(\mathbf{v}=\) ĐP \(_{\infty}\)
- \(\mathbf{P}_{\infty}\) is a point at infinity, \(\mathbf{v}\) is its projection
- Depends only on line direction
- Parallel lines \(\mathbf{P}_{0}+\mathrm{tD}, \mathbf{P}_{1}+\mathrm{tD}\) intersect at \(\mathbf{P}_{\infty}\)

\section*{Computing vanishing lines}


\section*{Computing vanishing lines}



\section*{Computing vanishing lines}


- Properties
- I is intersection of horizontal plane through \(\mathbf{C}\) with image plane

\section*{Computing vanishing lines}

- Properties
- I is intersection of horizontal plane through \(\mathbf{C}\) with image plane
- Compute I from two sets of parallel lines on ground plane

\section*{Computing vanishing lines}

- Properties
- I is intersection of horizontal plane through C with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as C project to I
- points higher than C project above I
- Provides way of comparing height of objects in the scene


\section*{Fun with vanishing points}


\section*{Fun with vanishing points}


Perspective cues


Perspective cues


Perspective cues


\section*{Comparing heights}


\section*{Measuring height}


\section*{Measuring height}


\section*{Measuring height}


\section*{Measuring height}


\section*{Measuring height}


\section*{Measuring height}


\section*{Measuring height}

How high is the camera?

\section*{Measuring height}

How high is the camera?```

