
Lecture 15: Single-view modeling

CS6670: Computer Vision
Noah Snavely

Project 3 Overview

• Due Oct 18
• Teams of 2 students
• Concepts covered in lectures 12

(Ransac), 15 (Panoramas)
2

3

// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift
// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200

TO
D

O
 1

P2
TO

D
O

 2
TO

D
O

 3

stitch2.txt

3

// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift
// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200

TO
D

O
 1

P2
TO

D
O

 2
TO

D
O

 3

stitch2.txt

3

// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift
// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200

TO
D

O
 1

P2
TO

D
O

 2
TO

D
O

 3

stitch2.txt

3

// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift
// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200

TO
D

O
 1

P2
TO

D
O

 2
TO

D
O

 3

stitch2.txt

3

// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift
// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200

TO
D

O
 1

P2
TO

D
O

 2
TO

D
O

 3

stitch2.txt

warp08.tga warp09.tga 1.000000e+00 0.000000e+00 -2.080708e+02 0.000000e+00 0.000000e+00

3

// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift
// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200

TO
D

O
 1

P2
TO

D
O

 2
TO

D
O

 3

stitch2.txt

warp08.tga warp09.tga 1.000000e+00 0.000000e+00 -2.080708e+02 0.000000e+00 0.000000e+00

TODO1: Spherical Warping

4

Image plane

You will need the camera
focal length here

Latitude vs Longitude

TODO1: Spherical Warping

4

Image plane

You will need the camera
focal length here

Latitude vs Longitude

WarpSphericalField

TODO1: Radial Distortion

5

6

CFloatImage WarpSphericalField(CShape srcSh, CShape dstSh, float f,
! ! ! ! ! ! float k1, float k2, const CTransform3x3 &r)
{
! // Set up the pixel coordinate image
! dstSh.nBands = 2;
! CFloatImage uvImg(dstSh); // (u,v) coordinates
!
! CVector3 p;
!
! p[0] = sin(0.0) * cos(0.0);
! p[1] = sin(0.0);
! p[2] = cos(0.0) * cos(0.0);
! p = r * p;
! double min_y = p[1];
!
! // Fill in the values
! for (int y = 0; y < dstSh.height; y++) {
! ! float *uv = &uvImg.Pixel(0, y, 0);
! ! for (int x = 0; x < dstSh.width; x++, uv += 2) {
! ! ! // (x,y) is the spherical image coordinates.
! ! ! // (xf,yf) is the spherical coordinates, e.g., xf is the angle theta
! ! ! // and yf is the angle phi
! ! !
! ! ! float xf = (float) ((x - 0.5f*dstSh.width) / f);
! ! ! float yf = (float) ((y - 0.5f*dstSh.height) / f - min_y);
! ! !
! ! ! // (xt,yt,zt) are intermediate coordinates to which you can
! ! ! // apply the spherical correction and radial distortion
! ! ! float xt, yt;
! ! ! CVector3 p;
! ! !
! ! ! // BEGIN TODO
! ! !
! ! ! // END TODO
!
! ! ! // Convert back to regular pixel coordinates and store
! ! ! float xn = 0.5f*srcSh.width + xt*f;
! ! ! float yn = 0.5f*srcSh.height + yt*f;
! ! ! uv[0] = xn;
! ! ! uv[1] = yn;
! ! }
! }
! return uvImg;
}

TODO2: RANSAC

7

procedure RANSAC

n_inliers_best := 0
for nRANSAC rounds do
{
 p := random subset of points
 m := fit model using points p
 n_inliers := count inliers given model m
!
 if n_inliers > n_inliers_best
 {
 n_inliers_best := n_inliers
 m_best := m
 }
}

m_final := least squares fit of m with all
 inliers to m_best

TODO2: RANSAC

7

procedure RANSAC

n_inliers_best := 0
for nRANSAC rounds do
{
 p := random subset of points
 m := fit model using points p
 n_inliers := count inliers given model m
!
 if n_inliers > n_inliers_best
 {
 n_inliers_best := n_inliers
 m_best := m
 }
}

m_final := least squares fit of m with all
 inliers to m_best

int alignPair(const FeatureSet &f1, const FeatureSet &f2,
! const vector<FeatureMatch> &matches, MotionModel m,
! int nRANSAC, double RANSACthresh, CTransform3x3& M)

TODO2: RANSAC

7

procedure RANSAC

n_inliers_best := 0
for nRANSAC rounds do
{
 p := random subset of points
 m := fit model using points p
 n_inliers := count inliers given model m
!
 if n_inliers > n_inliers_best
 {
 n_inliers_best := n_inliers
 m_best := m
 }
}

m_final := least squares fit of m with all
 inliers to m_best

ComputeHomography(const FeatureSet &f1, const FeatureSet &f2,
 const vector<FeatureMatch> &matches)

int alignPair(const FeatureSet &f1, const FeatureSet &f2,
! const vector<FeatureMatch> &matches, MotionModel m,
! int nRANSAC, double RANSACthresh, CTransform3x3& M)

TODO2: RANSAC

7

procedure RANSAC

n_inliers_best := 0
for nRANSAC rounds do
{
 p := random subset of points
 m := fit model using points p
 n_inliers := count inliers given model m
!
 if n_inliers > n_inliers_best
 {
 n_inliers_best := n_inliers
 m_best := m
 }
}

m_final := least squares fit of m with all
 inliers to m_best

ComputeHomography(const FeatureSet &f1, const FeatureSet &f2,
 const vector<FeatureMatch> &matches)

int countInliers(const FeatureSet &f1, const FeatureSet &f2,
 const vector<FeatureMatch> &matches, MotionModel m,
! ! ! ! CTransform3x3 M, double RANSACthresh, vector<int> &inliers)

int alignPair(const FeatureSet &f1, const FeatureSet &f2,
! const vector<FeatureMatch> &matches, MotionModel m,
! int nRANSAC, double RANSACthresh, CTransform3x3& M)

TODO2: RANSAC

7

procedure RANSAC

n_inliers_best := 0
for nRANSAC rounds do
{
 p := random subset of points
 m := fit model using points p
 n_inliers := count inliers given model m
!
 if n_inliers > n_inliers_best
 {
 n_inliers_best := n_inliers
 m_best := m
 }
}

m_final := least squares fit of m with all
 inliers to m_best

ComputeHomography(const FeatureSet &f1, const FeatureSet &f2,
 const vector<FeatureMatch> &matches)

int countInliers(const FeatureSet &f1, const FeatureSet &f2,
 const vector<FeatureMatch> &matches, MotionModel m,
! ! ! ! CTransform3x3 M, double RANSACthresh, vector<int> &inliers)

int leastSquaresFit(const FeatureSet &f1, const FeatureSet &f2,
 const vector<FeatureMatch> &matches, MotionModel m,
! ! ! ! const vector<int> &inliers, CTransform3x3& M)

int alignPair(const FeatureSet &f1, const FeatureSet &f2,
! const vector<FeatureMatch> &matches, MotionModel m,
! int nRANSAC, double RANSACthresh, CTransform3x3& M)

TODO3: Image Blending

8

CByteImage BlendImages(CImagePositionV& ipv, float blendWidth)

Part1: Figure out the bounding box of the composite
Will have to reproject image corners using transforms

(x_min, y_min)

(x_max, y_max)

TODO3: Image Blending

9

static void AccumulateBlend(CByteImage& img, CFloatImage& acc, CTransform3x3 M, float blendWidth)

static void NormalizeBlend(CFloatImage& acc, CByteImage& img)

Dark strip in image

divides composite by total weight to get range values back to [0,1]

double CImageOf<T>::PixelLerp(double x, double y, int band)

For linear interpolation of pixel values you can use the method

TODO3: Image Blending
• Final step: drift correction

10

Projective geometry

• Readings
– Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision,

Appendix: Projective Geometry for Machine Vision, MIT Press,
Cambridge, MA, 1992,
(read 23.1 - 23.5, 23.10)
• available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Ames Room

http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf
http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf
http://www.illusionworks.com/html/ames_room.html
http://www.illusionworks.com/html/ames_room.html

Projective geometry—what’s it good for?
• Uses of projective geometry
– Drawing
– Measurements
– Mathematics for projection
– Undistorting images
– Camera pose estimation
– Object recognition

Paolo Uccello

http://en.wikipedia.org/wiki/Paolo_Uccello
http://en.wikipedia.org/wiki/Paolo_Uccello

Applications of projective
geometry

Vermeer’s Music Lesson

Reconstructions by Criminisi et al.

Measurements on planes

Measurements on planes

Measurements on planes

Approach: unwarp then measure

Measurements on planes

Approach: unwarp then measure

1 2 3 4

1

2

3

4

Measurements on planes

Approach: unwarp then measure

1 2 3 4

1

2

3

4

Measurements on planes

Approach: unwarp then measure

1 2 3 4

1

2

3

4

Measurements on planes

Approach: unwarp then measure

Point and line duality
– A line l is a homogeneous 3-vector
– It is ⊥ to every point (ray) p on the line:

l p=0

p1 p2

Point and line duality
– A line l is a homogeneous 3-vector
– It is ⊥ to every point (ray) p on the line:

l p=0

p1 p2

What is the line l spanned by rays p1 and p2 ?

Point and line duality
– A line l is a homogeneous 3-vector
– It is ⊥ to every point (ray) p on the line:

l p=0

p1 p2

What is the line l spanned by rays p1 and p2 ?
• l is ⊥ to p1 and p2 ⇒ l = p1 × p2

Point and line duality
– A line l is a homogeneous 3-vector
– It is ⊥ to every point (ray) p on the line:

l p=0

p1 p2

What is the line l spanned by rays p1 and p2 ?
• l is ⊥ to p1 and p2 ⇒ l = p1 × p2

• l can be interpreted as a plane normal

l

Point and line duality
– A line l is a homogeneous 3-vector
– It is ⊥ to every point (ray) p on the line:

l p=0

p1 p2

What is the line l spanned by rays p1 and p2 ?
• l is ⊥ to p1 and p2 ⇒ l = p1 × p2

• l can be interpreted as a plane normal

l

Point and line duality
– A line l is a homogeneous 3-vector
– It is ⊥ to every point (ray) p on the line:

l p=0

p1 p2 l1
l2

p

What is the line l spanned by rays p1 and p2 ?
• l is ⊥ to p1 and p2 ⇒ l = p1 × p2

• l can be interpreted as a plane normal

l

Point and line duality
– A line l is a homogeneous 3-vector
– It is ⊥ to every point (ray) p on the line:

l p=0

p1 p2

What is the intersection of two lines l1 and l2 ?

l1
l2

p

What is the line l spanned by rays p1 and p2 ?
• l is ⊥ to p1 and p2 ⇒ l = p1 × p2

• l can be interpreted as a plane normal

l

Point and line duality
– A line l is a homogeneous 3-vector
– It is ⊥ to every point (ray) p on the line:

l p=0

p1 p2

What is the intersection of two lines l1 and l2 ?
• p is ⊥ to l1 and l2 ⇒ p = l1 × l2

l1
l2

p

What is the line l spanned by rays p1 and p2 ?
• l is ⊥ to p1 and p2 ⇒ l = p1 × p2

• l can be interpreted as a plane normal

l

Point and line duality
– A line l is a homogeneous 3-vector
– It is ⊥ to every point (ray) p on the line:

l p=0

p1 p2

What is the intersection of two lines l1 and l2 ?
• p is ⊥ to l1 and l2 ⇒ p = l1 × l2

Points and lines are dual in projective space

l1
l2

p

What is the line l spanned by rays p1 and p2 ?
• l is ⊥ to p1 and p2 ⇒ l = p1 × p2

• l can be interpreted as a plane normal

Ideal points and lines

(sx,sy,0)-y

x-z image plane

Ideal points and lines

• Ideal point (“point at infinity”)
– p ≅ (x, y, 0) – parallel to image plane
– It has infinite image coordinates

(sx,sy,0)-y

x-z image plane

Ideal points and lines

• Ideal point (“point at infinity”)
– p ≅ (x, y, 0) – parallel to image plane
– It has infinite image coordinates

(sx,sy,0)-y

x-z image plane

Ideal line
• l ≅ (a, b, 0) – parallel to image plane

(a,b,0)
-y

x
-z image plane

Ideal points and lines

• Ideal point (“point at infinity”)
– p ≅ (x, y, 0) – parallel to image plane
– It has infinite image coordinates

(sx,sy,0)-y

x-z image plane

Ideal line
• l ≅ (a, b, 0) – parallel to image plane

(a,b,0)
-y

x
-z image plane

Ideal points and lines

• Ideal point (“point at infinity”)
– p ≅ (x, y, 0) – parallel to image plane
– It has infinite image coordinates

(sx,sy,0)-y

x-z image plane

Ideal line
• l ≅ (a, b, 0) – parallel to image plane

(a,b,0)
-y

x
-z image plane

• Corresponds to a line in the image (finite coordinates)
– goes through image origin (principle point)

3D projective geometry

3D projective geometry
• These concepts generalize naturally to

3D
– Homogeneous coordinates

• Projective 3D points have four coords: P =
(X,Y,Z,W)

3D projective geometry
• These concepts generalize naturally to

3D
– Homogeneous coordinates

• Projective 3D points have four coords: P =
(X,Y,Z,W)

– Duality

3D projective geometry
• These concepts generalize naturally to

3D
– Homogeneous coordinates

• Projective 3D points have four coords: P =
(X,Y,Z,W)

– Duality
• A plane N is also represented by a 4-vector

3D projective geometry
• These concepts generalize naturally to

3D
– Homogeneous coordinates

• Projective 3D points have four coords: P =
(X,Y,Z,W)

– Duality
• A plane N is also represented by a 4-vector
• Points and planes are dual in 3D: N P=0

3D projective geometry
• These concepts generalize naturally to

3D
– Homogeneous coordinates

• Projective 3D points have four coords: P =
(X,Y,Z,W)

– Duality
• A plane N is also represented by a 4-vector
• Points and planes are dual in 3D: N P=0
• Three points define a plane, three planes define a

point

3D to 2D: perspective
projection

 Projection:

Vanishing points (1D)
image plane

camera
center

ground plane

Vanishing points (1D)
image plane

camera
center

ground plane

Vanishing points (1D)
image plane

camera
center

ground plane

Vanishing points (1D)
image plane

camera
center

ground plane

Vanishing points (1D)
image plane

camera
center

ground plane

Vanishing points (1D)
image plane

camera
center

ground plane

Vanishing points (1D)
image plane

camera
center

ground plane

Vanishing points (1D)
image plane

camera
center

ground plane

Vanishing points (1D)
image plane

camera
center

ground plane

vanishing point

Vanishing points (1D)

• Vanishing point
– projection of a point at infinity
– can often (but not always) project to a

finite point in the image

image plane

camera
center

ground plane

vanishing point

Vanishing points (1D)

• Vanishing point
– projection of a point at infinity
– can often (but not always) project to a

finite point in the image

image plane

camera
center

ground plane

vanishing point

camera
center

image plane

Vanishing points (2D)
image plane

camera
center

line on ground plane

Vanishing points (2D)
image plane

camera
center

line on ground plane

Vanishing points (2D)
image plane

camera
center

line on ground plane

Vanishing points (2D)
image plane

camera
center

line on ground plane

Vanishing points (2D)
image plane

camera
center

line on ground plane

vanishing point

Vanishing points
image plane

camera
center
C

line on ground plane

vanishing point V

Vanishing points
image plane

camera
center
C

line on ground plane

vanishing point V

line on ground plane

Vanishing points

• Properties
– Any two parallel lines (in 3D) have the same

vanishing point v

image plane

camera
center
C

line on ground plane

vanishing point V

line on ground plane

Vanishing points

• Properties
– Any two parallel lines (in 3D) have the same

vanishing point v
– The ray from C through v is parallel to the

lines

image plane

camera
center
C

line on ground plane

vanishing point V

line on ground plane

Vanishing points

• Properties
– Any two parallel lines (in 3D) have the same

vanishing point v
– The ray from C through v is parallel to the

lines
– An image may have more than one vanishing

point
• in fact, every image point is a potential vanishing

point

image plane

camera
center
C

line on ground plane

vanishing point V

line on ground plane

Two point perspective

Two point perspective

vxvy

Three point perspective

Vanishing lines
v1 v2

Vanishing lines

• Multiple Vanishing Points
– Any set of parallel lines on the plane define a

vanishing point

v1 v2

Vanishing lines

• Multiple Vanishing Points
– Any set of parallel lines on the plane define a

vanishing point
– The union of all of these vanishing points is the

horizon line

v1 v2

Vanishing lines

• Multiple Vanishing Points
– Any set of parallel lines on the plane define a

vanishing point
– The union of all of these vanishing points is the

horizon line
• also called vanishing line

v1 v2

Vanishing lines

• Multiple Vanishing Points
– Any set of parallel lines on the plane define a

vanishing point
– The union of all of these vanishing points is the

horizon line
• also called vanishing line

– Note that different planes (can) define different
vanishing lines

v1 v2

Vanishing lines

• Multiple Vanishing Points
– Any set of parallel lines on the plane define a

vanishing point
– The union of all of these vanishing points is the

horizon line
• also called vanishing line

– Note that different planes (can) define different
vanishing lines

Computing vanishing points
V

P0

D

Computing vanishing points
V

P0

D

t ! 1

Computing vanishing points
V

P0

D

t ! 1

Computing vanishing points

• Properties

V

P0

D

t ! 1

Computing vanishing points

• Properties
– P∞ is a point at infinity, v is its projection
– Depends only on line direction
– Parallel lines P0 + tD, P1 + tD intersect at P∞

V

P0

D

t ! 1

Computing vanishing lines

ground plane

lC

Computing vanishing lines

ground plane

lC

v1 v2l

Computing vanishing lines

• Properties
– l is intersection of horizontal plane through C with image plane

ground plane

lC

v1 v2l

Computing vanishing lines

• Properties
– l is intersection of horizontal plane through C with image plane
– Compute l from two sets of parallel lines on ground plane

ground plane

lC

v1 v2l

Computing vanishing lines

• Properties
– l is intersection of horizontal plane through C with image plane
– Compute l from two sets of parallel lines on ground plane
– All points at same height as C project to l

• points higher than C project above l
– Provides way of comparing height of objects in the scene

ground plane

lC

v1 v2l

Fun with vanishing points

Fun with vanishing points

Perspective cues

Perspective cues

Perspective cues

Comparing heights
Vanishing

Point

Measuring height

1

2

3

4

5

Measuring height

1

2

3

4

5

Measuring height

1

2

3

4

5

Measuring height

1

2

3

4

5
5.4

Measuring height

1

2

3

4

5
5.4

Measuring height

1

2

3

4

5
5.4

2.8

Measuring height

1

2

3

4

5
5.4

2.8

How high is the camera?

Measuring height

1

2

3

4

5
5.4

2.8
3.3

Camera height
How high is the camera?

