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Project 3 Overview

• Due Oct 18
• Teams of 2 students
• Concepts covered in lectures 12 

(Ransac), 15 (Panoramas)
2
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// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift
// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200
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TODO1: Spherical Warping
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Image plane

You will need the camera
focal length here

Latitude vs Longitude
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Image plane

You will need the camera
focal length here

Latitude vs Longitude

WarpSphericalField



TODO1: Radial Distortion
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CFloatImage WarpSphericalField(CShape srcSh, CShape dstSh, float f,
! ! ! ! ! !     float k1, float k2, const CTransform3x3 &r)
{
! // Set up the pixel coordinate image
! dstSh.nBands = 2;
! CFloatImage uvImg(dstSh);   // (u,v) coordinates
!
! CVector3 p;
!
! p[0] = sin(0.0) * cos(0.0);
! p[1] = sin(0.0);
! p[2] = cos(0.0) * cos(0.0);
! p = r * p;
! double min_y = p[1];
!
! // Fill in the values
! for (int y = 0; y < dstSh.height; y++) {
! ! float *uv = &uvImg.Pixel(0, y, 0);
! ! for (int x = 0; x < dstSh.width; x++, uv += 2) {
! ! ! // (x,y) is the spherical image coordinates. 
! ! ! // (xf,yf) is the spherical coordinates, e.g., xf is the angle theta
! ! ! // and yf is the angle phi
! ! !
! ! ! float xf = (float) ((x - 0.5f*dstSh.width ) / f);
! ! ! float yf = (float) ((y - 0.5f*dstSh.height) / f - min_y);
! ! !
! ! ! // (xt,yt,zt) are intermediate coordinates to which you can
! ! ! // apply the spherical correction and radial distortion
! ! ! float xt, yt;
! ! ! CVector3 p;
! ! !
! ! ! // BEGIN TODO
! ! !
! ! ! // END TODO
!     
! ! ! // Convert back to regular pixel coordinates and store
! ! ! float xn = 0.5f*srcSh.width  + xt*f;
! ! ! float yn = 0.5f*srcSh.height + yt*f;
! ! ! uv[0] = xn;
! ! ! uv[1] = yn;
! ! }
! }
! return uvImg;
}



TODO2: RANSAC
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procedure RANSAC

n_inliers_best := 0
for nRANSAC rounds do
{
    p := random subset of points
    m := fit model using points p
    n_inliers := count inliers given model m
!
    if n_inliers > n_inliers_best
    {
        n_inliers_best := n_inliers
        m_best := m
    }
}

m_final := least squares fit of m with all
          inliers to m_best
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TODO3: Image Blending
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CByteImage BlendImages(CImagePositionV& ipv, float blendWidth)

Part1: Figure out the bounding box of the composite
Will have to reproject image corners using transforms

(x_min, y_min)

(x_max, y_max)



TODO3: Image Blending
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static void AccumulateBlend(CByteImage& img, CFloatImage& acc, CTransform3x3 M, float blendWidth)

static void NormalizeBlend(CFloatImage& acc, CByteImage& img)

Dark strip in image

divides composite by total weight to get range values back to [0,1]

double CImageOf<T>::PixelLerp(double x, double y, int band)

For linear interpolation of pixel values you can use the method



TODO3: Image Blending
• Final step: drift correction
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Projective geometry

• Readings
– Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, 

Appendix: Projective Geometry for Machine Vision, MIT Press, 
Cambridge, MA, 1992, 
(read  23.1 - 23.5, 23.10)
• available online:  http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Ames Room

http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf
http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf
http://www.illusionworks.com/html/ames_room.html
http://www.illusionworks.com/html/ames_room.html


Projective geometry—what’s it good for?
• Uses of projective geometry
– Drawing
– Measurements
– Mathematics for projection
– Undistorting images
– Camera pose estimation
– Object recognition

Paolo Uccello 

http://en.wikipedia.org/wiki/Paolo_Uccello
http://en.wikipedia.org/wiki/Paolo_Uccello


Applications of projective 
geometry 

Vermeer’s Music Lesson

Reconstructions by Criminisi et al.
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Point and line duality
– A line l is a homogeneous 3-vector
– It is ⊥ to every point (ray) p on the line:  

l p=0

p1 p2

What is the intersection of two lines l1 and l2 ?
• p is ⊥ to l1 and l2   ⇒   p = l1 × l2

Points and lines are dual in projective space

l1
l2

p
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Ideal points and lines

• Ideal point (“point at infinity”)
– p ≅ (x, y, 0) – parallel to image plane
– It has infinite image coordinates

(sx,sy,0)-y

x-z image plane

Ideal line
• l ≅ (a, b, 0) – parallel to image plane

(a,b,0)
-y

x
-z image plane

• Corresponds to a line in the image (finite coordinates)
– goes through image origin (principle point)
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3D projective geometry
• These concepts generalize naturally to 

3D
– Homogeneous coordinates

• Projective 3D points have four coords:  P = 
(X,Y,Z,W)

– Duality
• A plane N is also represented by a 4-vector
• Points and planes are dual in 3D: N P=0
• Three points define a plane, three planes define a 

point



3D to 2D:  perspective 
projection

 Projection:



Vanishing points (1D)
image plane

camera
center

ground plane



Vanishing points (1D)
image plane

camera
center

ground plane



Vanishing points (1D)
image plane

camera
center

ground plane



Vanishing points (1D)
image plane

camera
center

ground plane



Vanishing points (1D)
image plane

camera
center

ground plane



Vanishing points (1D)
image plane

camera
center

ground plane



Vanishing points (1D)
image plane

camera
center

ground plane



Vanishing points (1D)
image plane

camera
center

ground plane



Vanishing points (1D)
image plane

camera
center

ground plane

vanishing point



Vanishing points (1D)

• Vanishing point
– projection of a point at infinity
– can often (but not always) project to a 

finite point in the image

image plane

camera
center

ground plane

vanishing point



Vanishing points (1D)

• Vanishing point
– projection of a point at infinity
– can often (but not always) project to a 

finite point in the image

image plane

camera
center

ground plane

vanishing point

camera
center

image plane



Vanishing points (2D)
image plane

camera
center

line on ground plane



Vanishing points (2D)
image plane

camera
center

line on ground plane



Vanishing points (2D)
image plane

camera
center

line on ground plane



Vanishing points (2D)
image plane

camera
center

line on ground plane



Vanishing points (2D)
image plane

camera
center

line on ground plane

vanishing point



Vanishing points
image plane

camera
center
C

line on ground plane

vanishing point V



Vanishing points
image plane

camera
center
C

line on ground plane

vanishing point V

line on ground plane



Vanishing points

• Properties
– Any two parallel lines (in 3D) have the same 

vanishing point v

image plane

camera
center
C

line on ground plane

vanishing point V

line on ground plane



Vanishing points

• Properties
– Any two parallel lines (in 3D) have the same 

vanishing point v
– The ray from C through v is parallel to the 

lines

image plane

camera
center
C

line on ground plane

vanishing point V

line on ground plane



Vanishing points

• Properties
– Any two parallel lines (in 3D) have the same 

vanishing point v
– The ray from C through v is parallel to the 

lines
– An image may have more than one vanishing 

point
• in fact, every image point is a potential vanishing 

point

image plane

camera
center
C

line on ground plane

vanishing point V

line on ground plane
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vxvy



Three point perspective
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Computing vanishing points

• Properties
– P∞ is a point at infinity, v is its projection
– Depends only on line direction
– Parallel lines P0 + tD, P1 + tD intersect at P∞

V

P0

D

t ! 1
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Computing vanishing lines

• Properties
– l is intersection of horizontal plane through C with image plane
– Compute l from two sets of parallel lines on ground plane
– All points at same height as C project to l

• points higher than C project above l
– Provides way of comparing height of objects in the scene

ground plane

lC

v1 v2l
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Measuring height

1

2

3

4

5
5.4

2.8
3.3

Camera height
How high is the camera?


