Lecture 15: Single-view modeling
Project 3 Overview

• Due Oct 18
• Teams of 2 students
• Concepts covered in lectures 12 (Ransac), 15 (Panoramas)
// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift
// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200
// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift
// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200
// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.sift warp09.sift match-08-09.txt 200 1 sift

// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200
// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift

// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200
// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga
Panorama sphrWarp pano1_0009.tga warp09.tga

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift

// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200
// Warp two of the half-resolution input images
// usage: project2 sphrWarp input.tga output.tga f [k1 k2]
Panorama sphrWarp pano1_0008.tga warp08.tga 595 -0.15 0.0
Panorama sphrWarp pano1_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp08.tga warp08.f
Features computeFeatures warp09.tga warp09.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2
// OR
Features matchSIFTFeatures warp08.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1
// OR
Panorama alignPair warp08.f warp09.f match-08-09.txt 200 1 sift
// ** NOTE: if using SIFT features and matches for debugging, use:
// Panorama alignPair warp08.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together
// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth
Panorama blendPairs pairlist2.txt stitch2.tga 200
TODO1: Spherical Warping

You will need the camera focal length here

Latitude vs Longitude
TODO1: Spherical Warping

You will need the camera focal length here

Latitude vs Longitude
TODO1: Radial Distortion

\[x'_d = x'_n (1 + \kappa_1 r^2 + \kappa_2 r^4) \]
\[y'_d = y'_n (1 + \kappa_1 r^2 + \kappa_2 r^4) \]
CFloatImage WarpSphericalField(CShape srcSh, CShape dstSh, float f, float k1, float k2, const CTransform3x3 &r)
{
 // Set up the pixel coordinate image
 dstSh.nBands = 2;
 CFloatImage uvImg(dstSh); // (u,v) coordinates

 CVecto3 p;

 p[0] = sin(0.0) * cos(0.0);
 p[1] = sin(0.0);
 p[2] = cos(0.0) * cos(0.0);
 p = r * p;
 double min_y = p[1];

 // Fill in the values
 for (int y = 0; y < dstSh.height; y++) {
 float *uv = &uvImg.Pixel(0, y, 0);
 for (int x = 0; x < dstSh.width; x++, uv += 2) {
 // (x,y) is the spherical image coordinates.
 // (xf,yf) is the spherical coordinates, e.g., xf is the angle theta
 // and yf is the angle phi
 float xf = (float) ((x - 0.5f*dstSh.width) / f);
 float yf = (float) ((y - 0.5f*dstSh.height) / f - min_y);

 // (xt,yt,zt) are intermediate coordinates to which you can
 // apply the spherical correction and radial distortion
 float xt, yt;
 CVecto3 p;

 // BEGIN TODO
 // END TODO

 // Convert back to regular pixel coordinates and store
 float xn = 0.5f*srcSh.width + xt*f;
 float yn = 0.5f*srcSh.height + yt*f;
 uv[0] = xn;
 uv[1] = yn;
 }
 }
 return uvImg;
}
procedure RANSAC

n_inliers_best := 0
for nRANSAC rounds do
{
 p := random subset of points
 m := fit model using points p
 n_inliers := count inliers given model m

 if n_inliers > n_inliers_best
 {
 n_inliers_best := n_inliers
 m_best := m
 }
}

m_final := least squares fit of m with all inliers to m_best
TODO2: RANSAC

```
procedure RANSAC

n_inliers_best := 0
for nRANSAC rounds do
{
    p := random subset of points
    m := fit model using points p
    n_inliers := count inliers given model m

    if n_inliers > n_inliers_best
    {
        n_inliers_best := n_inliers
        m_best := m
    }
}

m_final := least squares fit of m with all inliers to m_best
```

```cpp
int alignPair(const FeatureSet &f1, const FeatureSet &f2, const vector<FeatureMatch> &matches, MotionModel m, int nRANSAC, double RANSACthresh, CTransform3x3& M)
```
procedure RANSAC

n_inliers_best := 0
for nRANSAC rounds do
{
 p := random subset of points
 m := fit model using points p
 n_inliers := count inliers given model m

 if n_inliers > n_inliers_best
 {
 n_inliers_best := n_inliers
 m_best := m
 }
}

m_final := least squares fit of m with all inliers to m_best

int alignPair(const FeatureSet &f1, const FeatureSet &f2, const vector<FeatureMatch> &matches)

int ComputeHomography(const FeatureSet &f1, const FeatureSet &f2, const vector<FeatureMatch> &matches, MotionModel m, CTransform3x3& M)
procedure RANSAC

n_inliers_best := 0
for nRANSAC rounds do
{
 p := random subset of points
 m := fit model using points p
 n_inliers := count inliers given model m
 if n_inliers > n_inliers_best
 {
 n_inliers_best := n_inliers
 m_best := m
 }
}

m_final := least squares fit of m with all
 inliers to m_best
procedure RANSAC

n_inliers_best := 0
for nRANSAC rounds do
{
 p := random subset of points
 m := fit model using points p
 n_inliers := count inliers given model m

 if n_inliers > n_inliers_best
 {
 n_inliers_best := n_inliers
 m_best := m
 }
}

m_final := least squares fit of m with all
 inliers to m_best

ComputeHomography(const FeatureSet &f1, const FeatureSet &f2,
 const vector<FeatureMatch> &matches)

int countInliers(const FeatureSet &f1, const FeatureSet &f2,
 const vector<FeatureMatch> &matches, MotionModel m,
 CTransform3x3 &M, double RANSACthresh, vector<int> &inliers)

int leastSquaresFit(const FeatureSet &f1, const FeatureSet &f2,
 const vector<FeatureMatch> &matches, CTransform3x3 &M)

int alignPair(const FeatureSet &f1, const FeatureSet &f2,
 const vector<FeatureMatch> &matches, int nRANSAC, double RANSACthresh,
 CTransform3x3 &M)
TODO3: Image Blending

CByteImage BlendImages(CImagePositionV& ipv, float blendWidth)

Part 1: Figure out the bounding box of the composite
Will have to reproject image corners using transforms

(x_min, y_min)

(x_max, y_max)
static void AccumulateBlend(CByteImage& img, CFloatImage& acc, CTransform3x3 M, float blendWidth)

For linear interpolation of pixel values you can use the method

double CImageOf<T>::PixelLerp(double x, double y, int band)

static void NormalizeBlend(CFloatImage& acc, CByteImage& img)

divides composite by total weight to get range values back to [0,1]
TODO3: Image Blending

- Final step: drift correction

Solution
- add another copy of first image at the end
- this gives a constraint: $y_n = y_1$
- there are a bunch of ways to solve this problem
 - add displacement of $(y_1 - y_n)/(n - 1)$ to each image after the first
 - apply an affine warp: $y' = y + ax$ [you will implement this for P3]
 - run a big optimization problem, incorporating this constraint
 - best solution, but more complicated
 - known as “bundle adjustment”
Projective geometry

• Readings
Projective geometry—what’s it good for?

• Uses of projective geometry
 – Drawing
 – Measurements
 – Mathematics for projection
 – Undistorting images
 – Camera pose estimation
 – Object recognition
Applications of projective geometry

Vermeer’s Music Lesson

Reconstructions by Criminisi et al.
Measurements on planes
Measurements on planes
Measurements on planes

Approach: unwarp then measure
Point and line duality

- A line l is a homogeneous 3-vector
- It is \perp to every point (ray) p on the line: $l \cdot p = 0$
Point and line duality

- A line l is a homogeneous 3-vector.
- It is \perp to every point (ray) p on the line: $l \cdot p = 0$.

What is the line l spanned by rays p_1 and p_2?
Point and line duality

- A line l is a homogeneous 3-vector.
- It is \perp to every point (ray) p on the line: $l \cdot p = 0$.

What is the line l spanned by rays p_1 and p_2?

- l is \perp to p_1 and $p_2 \Rightarrow l = p_1 \times p_2$.
Point and line duality

– A line \(l \) is a homogeneous 3–vector
– It is \(\perp \) to every point (ray) \(p \) on the line: \(l \cdot p = 0 \)

What is the line \(l \) spanned by rays \(p_1 \) and \(p_2 \)?

• \(l \) is \(\perp \) to \(p_1 \) and \(p_2 \) \(\Rightarrow \) \(l = p_1 \times p_2 \)
• \(l \) can be interpreted as a plane normal
Point and line duality

- A line l is a homogeneous 3-vector
- It is \perp to every point (ray) p on the line: $l \cdot p = 0$

What is the line l spanned by rays p_1 and p_2?

- l is \perp to p_1 and p_2 \Rightarrow $l = p_1 \times p_2$
- l can be interpreted as a plane normal
Point and line duality

– A line \(\mathbf{l} \) is a homogeneous 3-vector
– It is \(\perp \) to every point (ray) \(\mathbf{p} \) on the line: \(\mathbf{l} \cdot \mathbf{p} = 0 \)

What is the line \(\mathbf{l} \) spanned by rays \(\mathbf{p}_1 \) and \(\mathbf{p}_2 \)?

• \(\mathbf{l} \) is \(\perp \) to \(\mathbf{p}_1 \) and \(\mathbf{p}_2 \) \(\Rightarrow \) \(\mathbf{l} = \mathbf{p}_1 \times \mathbf{p}_2 \)
• \(\mathbf{l} \) can be interpreted as a plane normal
Point and line duality

- A line l is a homogeneous 3-vector.
- It is \perp to every point (ray) p on the line: $l \cdot p = 0$.

What is the line l spanned by rays p_1 and p_2?

- l is \perp to p_1 and p_2 ⇒ $l = p_1 \times p_2$
- l can be interpreted as a plane normal.

What is the intersection of two lines l_1 and l_2?
Point and line duality

– A line \(l \) is a homogeneous 3–vector
– It is \(\perp \) to every point (ray) \(p \) on the line: \(l \cdot p = 0 \)

What is the line \(l \) spanned by rays \(p_1 \) and \(p_2 \)?

- \(l \) is \(\perp \) to \(p_1 \) and \(p_2 \) \(\Rightarrow \ l = p_1 \times p_2 \)
- \(l \) can be interpreted as a plane normal

What is the intersection of two lines \(l_1 \) and \(l_2 \)?

- \(p \) is \(\perp \) to \(l_1 \) and \(l_2 \) \(\Rightarrow \ p = l_1 \times l_2 \)
Point and line duality

– A line l is a homogeneous 3-vector
– It is \perp to every point (ray) p on the line: $l \cdot p = 0$

What is the line l spanned by rays p_1 and p_2?

• l is \perp to p_1 and p_2 \Rightarrow $l = p_1 \times p_2$
• l can be interpreted as a plane normal

What is the intersection of two lines l_1 and l_2?

• p is \perp to l_1 and l_2 \Rightarrow $p = l_1 \times l_2$

Points and lines are dual in projective space
Ideal points and lines

(sx, sy, 0)

image plane
Ideal points and lines

• Ideal point ("point at infinity")
 – \(p \equiv (x, y, 0) \) – parallel to image plane
 – It has infinite image coordinates
Ideal points and lines

- **Ideal point** ("point at infinity")
 - \(p \approx (x, y, 0) \) – parallel to image plane
 - It has infinite image coordinates

- **Ideal line**
 - \(l \approx (a, b, 0) \) – parallel to image plane
Ideal points and lines

• Ideal point ("point at infinity")
 – \(p \cong (x, y, 0) \) – parallel to image plane
 – It has infinite image coordinates

Ideal line
• \(l \cong (a, b, 0) \) – parallel to image plane
Ideal points and lines

- **Ideal point ("point at infinity")**
 - \(p \approx (x, y, 0) \) – parallel to image plane
 - It has infinite image coordinates

- **Ideal line**
 - \(l \approx (a, b, 0) \) – parallel to image plane
 - Corresponds to a line in the image (finite coordinates)
 - goes through image origin (principle point)
3D projective geometry
3D projective geometry

• These concepts generalize naturally to 3D
 – Homogeneous coordinates
 • Projective 3D points have four coords: \(P = (X,Y,Z,W) \)
3D projective geometry

• These concepts generalize naturally to 3D
 – Homogeneous coordinates
 • Projective 3D points have four coords: \(P = (X,Y,Z,W) \)

 – Duality
3D projective geometry

• These concepts generalize naturally to 3D
 – Homogeneous coordinates
 • Projective 3D points have four coords: \(P = (X, Y, Z, W) \)
 – Duality
 • A plane \(N \) is also represented by a 4–vector
3D projective geometry

• These concepts generalize naturally to 3D
 – Homogeneous coordinates
 • Projective 3D points have four coords: \(P = (X,Y,Z,W) \)

 – Duality
 • A plane \(N \) is also represented by a 4-vector
 • Points and planes are dual in 3D: \(N \cdot P = 0 \)
3D projective geometry

• These concepts generalize naturally to 3D
 – Homogeneous coordinates
 • Projective 3D points have four coords: $\mathbf{P} = (X,Y,Z,W)$

 – Duality
 • A plane \mathbf{N} is also represented by a 4-vector
 • Points and planes are dual in 3D: $\mathbf{N} \cdot \mathbf{P} = 0$
 • Three points define a plane, three planes define a point
3D to 2D: perspective projection

Projection: \[p = \begin{bmatrix} wx \\ wy \\ w \end{bmatrix} = \begin{bmatrix} * & * & * & * \\ * & * & * & * \\ * & * & * & * \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = DP \]
Vanishing points (1D)

- Image plane
- Camera center
- Ground plane
Vanishing points (1D)

image plane

camera center

ground plane
Vanishing points (1D)
Vanishing points (1D)
Vanishing points (1D)
Vanishing points (1D)

image plane

camera center

ground plane
Vanishing points (1D)

- Image plane
- Camera center
- Ground plane
Vanishing points (1D)
Vanishing points (1D)

image plane

vanishing point

camera center

ground plane
Vanishing points (1D)

- Vanishing point
 - projection of a point at infinity
 - can often (but not always) project to a finite point in the image
Vanishing points (1D)

- Vanishing point
 - projection of a point at infinity
 - can often (but not always) project to a finite point in the image
Vanishing points (2D)

- Image plane
- Camera center
- Line on ground plane
Vanishing points (2D)

- Image plane
- Camera center
- Line on ground plane
Vanishing points (2D)

- Image plane
- Camera center
- Line on ground plane
Vanishing points (2D)
Vanishing points (2D)
Vanishing points

image plane

vanishing point V

camera center C

line on ground plane
Vanishing points

- Image plane
- Vanishing point V
- Camera center C
- Line on ground plane
- Line on ground plane
Vanishing points

• Properties
 – Any two parallel lines (in 3D) have the same vanishing point v
Vanishing points

- **Properties**
 - Any two parallel lines (in 3D) have the same vanishing point v
 - The ray from C through v is parallel to the lines
Vanishing points

- Properties
 - Any two parallel lines (in 3D) have the same vanishing point v
 - The ray from C through v is parallel to the lines
 - An image may have more than one vanishing point
 - in fact, every image point is a potential vanishing point
Two point perspective
Two point perspective
Three point perspective
Vanishing lines
Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the horizon line
Vanishing lines

- **Multiple Vanishing Points**
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the horizon line
 - also called vanishing line
Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the horizon line
 - also called vanishing line
 - Note that different planes (can) define different vanishing lines
Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the horizon line
 - also called vanishing line
 - Note that different planes (can) define different vanishing lines
Computing vanishing points

\[\mathbf{P} = \mathbf{P}_0 + t \mathbf{D} \]
Computing vanishing points

\[P_t = \begin{bmatrix} P_x + tD_x \\ P_y + tD_y \\ P_z + tD_z \\ 1 \end{bmatrix} \approx \begin{bmatrix} P_x / t + D_x \\ P_y / t + D_y \\ P_z / t + D_z \\ 1/t \end{bmatrix} \]

\[P = P_0 + tD \]
Computing vanishing points

\[
P_t = \begin{bmatrix} P_x + t D_x \\ P_y + t D_y \\ P_z + t D_z \\ 1 \end{bmatrix} \approx \begin{bmatrix} P_x / t + D_x \\ P_y / t + D_y \\ P_z / t + D_z \\ 1/t \end{bmatrix} \quad t \to \infty \quad P_\infty \equiv \begin{bmatrix} D_x \\ D_y \\ D_z \\ 0 \end{bmatrix}
\]
Computing vanishing points

\[\mathbf{P}_t = \begin{bmatrix} P_x + tD_x \\ P_y + tD_y \\ P_z + tD_z \\ 1 \end{bmatrix} \approx \begin{bmatrix} P_x / t + D_x \\ P_y / t + D_y \\ P_z / t + D_z \\ 1/t \end{bmatrix} \]

\[\mathbf{P} = \mathbf{P}_0 + t\mathbf{D} \]

\[t \to \infty \quad \mathbf{P}_\infty \equiv \begin{bmatrix} D_x \\ D_y \\ D_z \\ 0 \end{bmatrix} \]

• Properties \[\mathbf{v} = \mathbf{D}\mathbf{P}_\infty \]
Computing vanishing points

- P_{∞} is a point at infinity, v is its projection
- Depends only on line direction
- Parallel lines $P_0 + tD, P_1 + tD$ intersect at P_{∞}

\[
P_t = \begin{bmatrix}
P_X + tD_X \\
P_Y + tD_Y \\
P_Z + tD_Z \\
1
\end{bmatrix} \approx \begin{bmatrix}
P_X / t + D_X \\
P_Y / t + D_Y \\
P_Z / t + D_Z \\
1/t
\end{bmatrix}
\]

\[
t \to \infty \quad \implies \quad P_{\infty} \equiv \begin{bmatrix}
D_X \\
D_Y \\
D_Z \\
0
\end{bmatrix}
\]

- Properties $v = DP_{\infty}$
Computing vanishing lines

ground plane
Computing vanishing lines
Computing vanishing lines

• Properties
 – \(I \) is intersection of horizontal plane through \(C \) with image plane
Computing vanishing lines

- Properties
 - \(l \) is intersection of horizontal plane through \(C \) with image plane
 - Compute \(l \) from two sets of parallel lines on ground plane
Computing vanishing lines

- Properties
 - l is intersection of horizontal plane through C with image plane
 - Compute l from two sets of parallel lines on ground plane
 - All points at same height as C project to l
 - points higher than C project above l
 - Provides way of comparing height of objects in the scene
Fun with vanishing points
Fun with vanishing points
Perspective cues
Perspective cues
Perspective cues
Comparing heights

Vanishing Point
Measuring height
Measuring height
Measuring height
Measuring height
Measuring height

5.4
Measuring height
Measuring height

How high is the camera?
Measuring height

How high is the camera?