CS6670: Computer Vision

Noah Snavely

Lecture 15: Single-view modeling

7

N
I ;
» 3

Project 3 Overview

e Due Oct 18
« Teams of 2 students

* Concepts covered in lectures 12
(Ransac), 15 (Panoramas)

stitch2.txt

// Warp two of the half-resolution input images

// usage: project2 sphrWarp input.tga output.tga f [kl k2]
Panorama sphrWarp panol_0008.tga warp@8.tga 595 -0.15 0.0
Panorama sphrWarp panol_0009.tga warp09.tga 595 -0.15 0.0

// Generate features for the two images
Features computeFeatures warp@8.tga warp@8.f
Features computeFeatures warp09.tga warp@9.f

// Match features (using ratio test)
Features matchFeatures warp08.f warp09.f 0.8 match-08-09.txt 2

// OR
Features matchSIFTFeatures warp@8.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:

Panorama alignPair warp@8.f warp09.f match-08-09.txt 200 1

// OR

Panorama alignPair warp@8.f warp09.f match-08-09.txt 200 1 sift

// **% NOTE: if using SIFT features and matches for debugging, use:

// Panorama alignPair warp@8.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together

// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth

// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200

TODO 1

P2

TODO 3 TODO 2

stitq

// Warp two of the half-resolution inp(
// usage: project2 sphrWarp input.tga @
Panorama sphrWarp panol_0008.tga warp@8
Panorama sphrWarp panol_0009.tga warp@9

// Generate features for the two images
Features computeFeatures warp@8.tga wan
Features computeFeatures warp@9.tga warp

// Match features (using ratio test)
Features matchFeatures warp@8.f warp09.f 0.8 match-08-09.txt 2

// OR
Features matchSIFTFeatures warp@8.sift warp09.sift 0.8 match-08-09.txt 2

// Align the pairs using feature matching:

Panorama alignPair warp@8.f warp@9.f match-08-09.txt 200 1

// OR

Panorama alignPair warp@8.f warp09.f match-08-09.txt 200 1 sift

// *x*% NOTE: if using SIFT features and matches for debugging, use:

// Panorama alignPair warp@8.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these two images together

// usage: project2 blendPairs pairlist.txt outfile.tga blendWidth

// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200

3

TODO 1

P2

TODO 3 TODO 2

stitq

// Warp two of the half-resolution inpg
// usage: project2 sphrWarp input.tga a
Panorama sphrWarp panol_0008.tga warp@8
Panorama sphrWarp panol_0009.tga warp@9

TODO 1

// Generate features for the two images
Features computeFeatures warp@8.tga wan
Features computeFeatures warp09.tga warp@9.
ft

P2

// Match features (using ratio test)

Features matchFeatures warp@8.f warp09.f 0.8 match-08-09.txt 2

// OR

Features matchSIFTFeatures warp@8.sift warp09.sift 0.8 match-08-09.txt 2

// Alian the nairs usina feature matchina:

danielcabrinihauvagge@DCH images$ Panorama alignPair warp88.sift warp9.sift match-08-09.txt 260 1 si
num_inliers: 371 / 456
1.000000e+00 ©.000000e+60 -2.080674e+02 ©0.000000¢+00 1.000000e+00 -4.948787¢+00 ©.000000e+00 0.000000e+00 1.000000e

// *x% NOTE: 1f using SIFT features and matches for debugging, use:
// Panorama alignPair warp@8.key warp@9.key match-08-09.txt 200 1 sift

// Finally, blend these two images together

// usage: project2 blendPairs pairlist.txt outfile.tga blendwWidth

// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200

™M
@)
o
@)
—

3

stitq

// Warp two of the half-resolution inpg
// usage: project2 sphrWarp input.tga a
Panorama sphrWarp panol_0008.tga warp@8
Panorama sphrWarp panol_0009.tga warp@9

TODO 1

// Generate features for the two images
Features computeFeatures warp@8.tga wan
Features computeFeatures warp09.tga warp@9.
ft

P2

// Match features (using ratio test)

Features matchFeatures warp@8.f warp09.f 0.8 match-08-09.txt 2

// OR

Features matchSIFTFeatures warp@8.sift warp09.sift 0.8 match-08-09.txt 2

// Alian the nairs usina feature matchina:

danielcabrinihauagge®DCH images$ Panorama alignPair warp88.sift warp9.sift match-08-09.txt 2606 1 si
num inliers: 371 / 456
1.600000+00 ©.000000e+00 -2.080674e+02 0,000000¢+00 1.000000e+00 -4.948787¢+00 ©.000000e+60 0.000000e+00 1.000000e

*x NOTE: 1f using SIFT features and matches for debugging, use:
// Panorama alignPair warp$8.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these twp images together

// usage: project2 blendPajirs pairlist.txt outfile.tga blendwWidth

// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200

TODO 3

3

stitq

// Warp two of the half-resolution inpg
// usage: project2 sphrWarp input.tga a
Panorama sphrWarp panol_0008.tga warp@8
Panorama sphrWarp panol_0009.tga warp@9

TODO 1

// Generate features for the two images
Features computeFeatures warp@8.tga wan
Features computeFeatures warp09.tga warp@9.

ft

P2

// Match features (using ratio test)
Features matchFeatures warp@8.f warp09.f 0.8 match-08-09.txt 2

// OR
Features matchSIFTFeatures warp@8.sift warp09.sift 0.8 match-08-09.txt 2

// Alian the nairs usina feature matchina:

danielcabrinihauvagge@DCH images$ Panorama alignPair warp88.sift warp9.sift match-08-09.txt 260 1 si
num inliers: 371 / 456
1.000000e+00 ©.000000e+00 -2.080674e+02 0,000000¢+00 1.000000e+00 -4,948787¢+00 0.000000e+00 0.000000e+00 1,000000e

*x NOTE: 1f using SIFT features and matches for debugging, use:
// Panorama alignPair warp$8.key warp09.key match-08-09.txt 200 1 sift

// Finally, blend these twp images together

// usage: project2 blendPajirs pairlist.txt outfile.tga blendwWidth

// assume the output from previous command was saved in pairlist2.txt
Panorama blendPairs pairlist2.txt stitch2.tga 200

y ;

warp08.tga warp09.tga 1.000000e+00 0.000000e+00 -2.080708e+02 0.000000e+00 0.00000

TODO 3

stitq

// Warp two of the half-resolution inpg
// usage: project2 sphrWarp input.tga a
Panorama sphrWarp panol_0008.tga warp@8
Panorama sphrWarp panol_0009.tga warp@9

TODO 1

// Generate features for the two images
Features computeFeatures warp@8.tga wan
Features computeFeatures warp09.tga warp@9.

ft

P2

// Match features (using ratio test)
Features matchFeatures warp@8.f warp09.f 0.8 match-08-09.txt 2

// OR
Features matchSIFTFeatures warp@8.sift warp09.sift 0.8 match-08-09.txt 2

// Alian the nairs usina feature matchina:

danielcabrinihauagge®DCH images$ Panorama alignPair warp88.sift warp9.sift match-08-09.txt 2606 1 si
num inliers: 371 / 456
1.600000+00 ©.000000e+00 -2.080674e+02 0,000000¢+00 1.000000e+00 -4.948787¢+00 ©.000000e+60 0.000000e+00 1.000000e

*x NOTE: 1f using SIFT features and mq
// Panorama alignPair warp$8.key warp@9.

// Finally, blend these twp images toget
// usage: project2 blendPajirs pairlist.t}
// assume the output from yrevious comma
Panorama blendPairs pairlist2.txt stitch

J

warp08.tga warp09.tga 1.000000e+00 (

00e+00 0.0000C

TODO1: Spherical Warping

Image plane

unwrapped sphere
unit sphere

You will need the camera
focal length here

input f =200 (pixels)

Cl./

xr Spherical image

Latitude vs Longitude

TODO1: Spherical Warping

Image plane
WarpSphericalField
/(\ Y. Z)
(Te, ¥e) il
unwrapped sphere — T Spherical image
unit sphere

You will need the camera

Latitude vs Longitude
focal length here

input f =200 (pixels)

TODO1: Radial Distortion
N TXOK

50

100

150

200

AR B

e Y W

100 200 300 400 500 G600 5

CFloatImage WarpSphericalField(CShape srcSh, CShape dstSh, float f,

{

float k1, float k2, const CTransform3x3 &r)

// Set up the pixel coordinate image
dstSh.nBands = 2;
CFloatImage uvImg(dstSh); // (u,v) cod Image plane

CVector3 p;

plo]
pl1l]
pl2]

// Fill in the values

WarpSphericalField

/:\ Y.Z)

sin(0.0) * cos(0.0); @ pT !
sin(0.0); [;'> Pl .o |i>
cos(0.0) * cos(0.0); ' s
P =r x p; unwrapped sphere & Sphencel image

double min_y =

| W)

Ut sphete

pll];

You will need the camera Latitude vs Longitude

focal length here

for (int y = 0; y < dstSh.height; y++) {

float *xuv =

&uvImg.Pixel(0, y, 0);

for (int x = 0; x < dstSh.width; x++, uv += 2) {
// (x,y) is the spherical image coordinates.
// (xf,yf) is the spherical coordinates, e.g., xf is the angle theta
// and yf is the angle phi

float
float

xf
yf

(float) ((x — @.5fxdstSh.width)

f);
(float) ((y - 0.5fxdstSh.height) / f -

~N NN

min_y);

// (xt,yt,zt) are intermediate coordinates to which you can
// apply the spherical correction and radial distortion

float

xt, yt;

CVector3 p;

// BEGIN TODO

// END TODO

// Convert back to regular pixel coordinates and store

float
float

uv[0]
vy 11

xn = 0.5fxsrcSh.width + xtxf;

yn = 0.5fksrcSh.height + ytxf; 6
xn;

\’/’N="*

TODOZ: RANSAC

procedure RANSAC

n inliers best := 0
for nRANSAC rounds do
{
p := random subset of points
m := fit model using points p
n inliers := count inliers given model m

if n _inliers > n _inliers best

{
n inliers best := n inliers
m best :=m
}
}
m final := least squares fit of m with all

inliers to m best

TODOZ: RANSAC

procedure RANSAC int alignPair(const FeatureSet &f1l, con:

const vector<FeatureMatch:
. . int nRANSAC, double RANSA
n _inliers best := 0

for nRANSAC rounds do
{
p := random subset of points
m := fit model using points p
n inliers := count inliers given model m

if n _inliers > n _inliers best

{
n inliers best := n inliers
m best :=m
}
}
m final := least squares fit of m with all

inliers to m best

TODOZ: RANSAC

procedure RANSAC int alignPair(const FeatureSet &f1l, con:

const vector<FeatureMatch:
. . int nRANSAC, double RANSA
n _inliers best := 0

for nRANSAC rounds do

{ ComputeHomography(const FeatureSet &f1,

p := random subset of points const vector<FeatureMg
m := fit model using points p
n inliers := count inliers given model m

if n _inliers > n _inliers best
n inliers best := n inliers
m best :=m

m final := least squares fit of m with all
inliers to m best

TODOZ: RANSAC

procedure RANSAC

n inliers best := 0
for nRANSAC rounds do

{
p := random subset of points
m := fit model using points p
n inliers := count inliers given model m
if n _inliers > n _inliers best
{
n _inliers best := n _inliers
m best :=m
}
}

m final := least squares fit of m with all
inliers to m best

int alignPair(const FeatureSet &f1, con:
const vector<FeatureMatch:
int nRANSAC, double RANSA

ComputeHomography(const FeatureSet &f1,
const vector<FeatureM:

int countInliers(const FeatureSet &f1l, ¢
const vector<FeatureMa
CTransform3x3 M, double

TODOZ: RANSAC

procedure RANSAC

n inliers best := 0
for nRANSAC rounds do
{
p := random subset of points
m := fit model using points p
n inliers := count inliers given model m

if n _inliers > n _inliers best
n inliers best := n inliers
m best :=m

m final := least squares fit of m with all
inliers to m best

int alignPair(const FeatureSet &f1, con:
const vector<FeatureMatch:
int nRANSAC, double RANSA

ComputeHomography(const FeatureSet &f1,
const vector<FeatureM:

int countInliers(const FeatureSet &f1l, ¢
const vector<FeatureMa
CTransform3x3 M, double

int leastSquaresFit(const FeatureSet &f
const vector<Featur
const vector<int> ¢

TODO3: Image Blending

CByteImage BlendImages(CImagePositionV& ipv, float blendWidth)

Partl: Figure out the bounding box of the composite
Will have to reproject image corners using transforms

(x_max, y max)

-

% (x_min, y min)

TODO3: Image Blending

static void AccumulateBlend(CByteImage& img, CFloatImage& acc, CTransform3x3 M, float blendWidth)

For linear interpolation of pixel values you can use the method
double CImageOf<T>::PixelLerp(double x, double y, int band)

mg1
15 mg2
1}
0s
0 pa— 4 I
0 20 40 80 20 100
2
[mgtl+img2
15}
1 —— o
0 [| N
0 20 40 &0 20 100

Dark strip in image

static void NormalizeBlend(CFloatImage& acc, CByteImage& img)

divides composite by total weight to get range values back to [0,1]

TODO3: Image Blending

* Final step: drift correction

(X4,¥1) | |

o (% ¥n)

,,,,,,,,, d

copy of first image

* Solution
— add another copy of first image at the end
— this gives a constraint: y, =y,
— there are a bunch of ways to solve this problem
+ add displacement of (y, —y,)/(n -1) to each image after the first
« apply an affine warp: y’ =y + ax [you will implement this for P3]

* run a big optimization problem, incorporating this constraint
— best solution, but more complicated
- known as “bundle adjustment”

Projective geometry

Ames Room

* Readings
— Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision,
Appendix: Projective Geometry for Machine Vision, MIT Press,

Cambridge, MA, 1992
(read 23.1 - 23.5,23.10)

- available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf
http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf
http://www.illusionworks.com/html/ames_room.html
http://www.illusionworks.com/html/ames_room.html

Projective geometry—what’s it good for?

« Uses of projective geometry
— Drawing Tty e
— Measurements P e
— Mathematics for projection oo
— Undistorting images S e m=
— Camera pose estimation
— Object recognition

s A
- -

’ N SRS

N gy R e e ¥ T .
a3 ViR o~ R R P .,.‘/'9_ 3
el T\ T R . 1

e *_;N;x_a._..).—-‘a-:a.‘.t&a}.’m

— 1

Paolo Uccello

http://en.wikipedia.org/wiki/Paolo_Uccello
http://en.wikipedia.org/wiki/Paolo_Uccello

Applications of projective
geometry

Vermeer’s Music Lesson

Reconstructions by Criminisi et al.

Measurements on planes

Measurements on planes

Measurements on planes

Approach: unwarp then measure

Measurements on planes

Approach: unwarp then measure

Measurements on planes

N W A

||||||'|||||||||||||
1 2 3 4

Approach: unwarp then measure

Measurements on planes

N W A

||||||'|||||||||||||
1 2 3 4

Approach: unwarp then measure

Measurements on planes

||||||||||||
1 2 3

Approach: unwarp then measure

Point and line duality

— A line |l is a homogeneous 3-vector

— It is L to every point (ray) p on the line:
| p=0
e

P,

Point and line duality

— A line |l is a homogeneous 3-vector

— It is L to every point (ray) p on the line:
| p=0
e

P,

What is the line | spanned by rays p; and p,?

Point and line duality

— A line |l is a homogeneous 3-vector

— It is L to every point (ray) p on the line:
| p=0
e

P,

What is the line | spanned by rays p; and p,?
- lisLtop;andp, = |=p;xp,

Point and line duality

— A line |l is a homogeneous 3-vector

— It is L to every point (ray) p on the line:
| p=0
e

P,

What is the line | spanned by rays p; and p,?
- lisLtop;andp, = |=p;xp,
« | can be interpreted as a plane normal

Point and line duality

— A line |l is a homogeneous 3-vector

— It is L to every point (ray) p on the line:
| p=0

What is the line | spanned by rays p; and p,?
- lisLtop;andp, = |=p;xp,
« | can be interpreted as a plane normal

Point and line duality

— A line |l is a homogeneous 3-vector

— It is L to every point (ray) p on the line:
| p=0

What is the line | spanned by rays p; and p,?
- lisLtop;andp, = |=p;xp,
« | can be interpreted as a plane normal

Point and line duality

— A line |l is a homogeneous 3-vector

— It is L to every point (ray) p on the line:
| p=0

What is the line | spanned by rays p; and p,?
- lisLtop;andp, = |=p;xp,

« | can be interpreted as a plane normal
What is the intersection of two lines I, and I, ?

Point and line duality

— A line |l is a homogeneous 3-vector

— It is L to every point (ray) p on the line:
| p=0

What is the line | spanned by rays p; and p,?
- lisLtop;andp, = |=p;xp,

« | can be interpreted as a plane normal
What is the intersection of two lines I, and I, ?

Point and line duality

— A line |l is a homogeneous 3-vector

— It is L to every point (ray) p on the line:
| p=0

What is the line | spanned by rays p; and p,?
- lisLtop;andp, = |=p;xp,

« | can be interpreted as a plane normal
What is the intersection of two lines I, and I, ?

Points and lines are dual in projective space

ldeal points and lines

(D
I ~
~
~
| ~
I ~
~

=Y (sx,s 03

T

~. image plane

ldeal points and lines

(D
I ~
~
~
| ~
I ~
~

I (sX,s 03’

\\

| image plane

 Ideal point (“point at infinity”)
—p=(x,v, 0) - parallel to image plane
— It has infinite image coordinates

ldeal points and lines

(sx,s O).

T

| image plane —Z “~~_ ! image plane

~

\

X

 Ideal point (“point at infinity”)
—p=(x,v, 0) - parallel to image plane
— It has infinite image coordinates

Ideal line
- | =(a, b, 0) - parallel to image plane

ldeal points and lines

~Z X “~._ 1 image plane —Z “~~_ ! image plane

 Ideal point (“point at infinity”)
—p=(x,v, 0) - parallel to image plane
— It has infinite image coordinates

Ideal line
- | =(a, b, 0) - parallel to image plane

ldeal points and lines

~Z X “~._ 1 image plane —Z “~~_ ! image plane

 Ideal point (“point at infinity”)
—p=(x,v, 0) - parallel to image plane
— It has infinite image coordinates

Ideal line
- | =(a, b, 0) - parallel to image plane

« Corresponds to a line in the image (finite coordinates)
— goes through image origin (principle point)

3D projective geometry

3D projective geometry

* These concepts generalize naturally to
3D

— Homogeneous coordinates

* Projective 3D points have four coords: P =
X,Y,Z,W)

3D projective geometry

* These concepts generalize naturally to
3D

— Homogeneous coordinates

* Projective 3D points have four coords: P =
X,Y,Z,W)

— Duality

3D projective geometry

* These concepts generalize naturally to
3D

— Homogeneous coordinates

* Projective 3D points have four coords: P =
X,Y,Z,W)

— Duality

A plane N is also represented by a 4-vector

3D projective geometry

* These concepts generalize naturally to
3D

— Homogeneous coordinates

* Projective 3D points have four coords: P =
X,Y,Z,W)

— Duality
A plane N is also represented by a 4-vector
* Points and planes are dual in 3D: N P=0

3D projective geometry

* These concepts generalize naturally to
3D

— Homogeneous coordinates

* Projective 3D points have four coords: P =
X,Y,Z,W)

— Duality

A plane N is also represented by a 4-vector
* Points and planes are dual in 3D: N P=0

* Three points define a plane, three planes define a
point

3D to 2D: perspective

Projection:

projection
p-|m|-: :

* X% %

_* K %

ENGE

-DP

Vanishing points (1D)

image plane

~~

camera
center

ground plane

Vanishing points (1D)

image plane

~~

camera
center

ground plane

Vanishing points (1D)

image plane

~~

camera
center

ground plane

Vanishing points (1D)

image plane

~~

camera
center

ground plane

Vanishing points (1D)

image plane

~~

camera
center

ground plane

Vanishing points (1D)

image plane

~~

camera
center

ground plane

Vanishing points (1D)

image plane

~~

camera
center

ground plane

Vanishing points (1D)

image plane

~~

camera
center

ground plane

Vanishing points (1D)

image plane

~~

vanishing point

camera
center

ground plane

Vanishing points (1D)

image plane

~~

vanishing point

camera
center

ground plane
* Vanishing point
— projection of a point at infinity

— can often (but not always) project to a
finite point in the image

Vanishing points (1D)

~~

vanishing point

camera
center

ground plane
* Vanishing point
— projection of a point at infinity
— can often (but not always) project to a
finite point in the image cmen,

center

image plane

~~

Varying points (2D)

aaaaaa

center /

/ line

on ground plane

Varying points (2D)

~~

aaaaaa
center

/ line

on ground plane

Varying points (2D)

\
aaaaaa \
center
/ line on ground plane

Varying points (2D)

\
aaaaaa '§ \‘\
center \
/ line on ground plane

image plane
\

Varying points (2D)

_vanishing point

|

camera
center \
line on ground plane

Vanishing points

image plane
\
_vanishing point V
T
e
camera
center
C
line on ground plane

Vanishing points

image plane
\
_vanishing point V

T
e
camera
center
C line on ground plane
line on ground plane

Vanishing points

image plane

Vanishing point V

\

camera

center
C

line on ground plane

line on ground plane

* Properties

— Any two parallel lines (in 3D) have the same
vanishing point v

Vanishing points

image plane
\
_vanishing point V
T
e
camera
center
C line on ground plane
line on ground plane

* Properties

— Any two parallel lines (in 3D) have the same
vanishing point v

— Fhe ray from C through v is parallel to the
ines

Vanishing points

image plane
\
_vanishing point V
T
e
camera
center
C line on ground plane
line on ground plane

* Properties

— Any two parallel lines (in 3D) have the same
vanishing point v

— Fhe ray from C through v is parallel to the
ines

— An image may have more than one vanishing
point

* in fact, every image point is a potential vanishing
point

Two point perspective

Two point perspective

Three point perspective

3 VANISHING POINTS -
LOOKING UP 1. 1

Vanishing lines

Vanishing lines

« Multiple Vanishing Points

— Any set of parallel lines on the plane define a
vanishing point

Vanishing lines

« Multiple Vanishing Points

— Any set of parallel lines on the plane define a
vanishing point

— The union of all of these vanishing points is the
horizon line

Vanishing lines

« Multiple Vanishing Points

— Any set of parallel lines on the plane define a
vanishing point

— The union of all of these vanishing points is the
horizon line
 also called vanishing line

Vanishing lines

« Multiple Vanishing Points

— Any set of parallel lines on the plane define a
vanishing point

— The union of all of these vanishing points is the
horizon line
 also called vanishing line

— Note that different planes (can) define different
vanishing lines

Vanishing lines

« Multiple Vanishing Points

— Any set of parallel lines on the plane define a
vanishing point

— The union of all of these vanishing points is the
horizon line

 also called vanishing line

— Note that different planes (can) define different

vanishing lines

Computing vanishing points
Sl p— P=P,+D

Computing vanishing points
Sl p— P=P,+D

(P, +tD,] [P, /t+D,]

P, +tD, P, /t+D,

P, +1D, P, /t+D,
1 1/t

e
Il
n

Computing vanishing points

Al
o e
P

G 5— P=P, +D

(P, +tD,] [P, /t+D,] D,]

P - P+tDy | | B /t+D, PRI - D,

P, +1D, P, /t+D, D,

1 || 1/t _O_

Computing vanishing points

Al
o e
P

G 5— P=P, +D

(P, +tD,] [P, /t+D,] D,]

P - P+tDy | | B /t+D, PRI - D,

P, +1D, P, /t+D, D,

1 || 1/t _O_

* Properties v=bpP,

r-l-

Computing vanishing points

Al
7
@
P
r— 0
5— P=P,+D
(P, +tD,] [P, /t+D,] D,]
P P,+tDy | | B /t+Dy PIIPOR P - D,
" | P, +tD, P,/t+D, “° |D,
1 1/t 0

Properties v=bP,
— P_is a point at infinity, v is its projection

— Depends only on line direction
— Parallel lines P, + tD, P, + tD intersect at P,

Computing vanishing lines

ground plane

Computing vanishing lines

ground plane

Vi

\D)

Computing vanishing lines

Vi | \f)

ground plane

* Properties

— lis intersection of horizontal plane through C with image plane

Computing vanishing lines

Vi | \f)

ground plane

* Properties

— lis intersection of horizontal plane through C with image plane
— Compute | from two sets of parallel lines on ground plane

Computing vanishing lines

Vi | \f)

ground plane

* Properties

— lis intersection of horizontal plane through C with image plane
— Compute | from two sets of parallel lines on ground plane

— All points at same height as C project to |
* points higher than C project above |

— Provides way of comparing height of objects in the scene

Fun with vanishing points

e _‘\ o A it
T exre SOt ancaP1997 Shepard

Texxa S M ancaP 1997 Shepard

Perspective cues

g A

Perspective cues

g A

Perspective cues

P

Comparing heights

Vanishing
Point

Y ” \

Measuring height

Measuring height

I
il

_E

N

N
\

Measuring height

|\/\p1/
vl

I

Measuring height

|\/\p1/
vl

I

{
h
9
he
INg

r

u

S

a

e

M

"

I

Measuring height

Measuring height

Measuring height

How high is the camera?

-

