CS4670 / 5670: Computer Vision

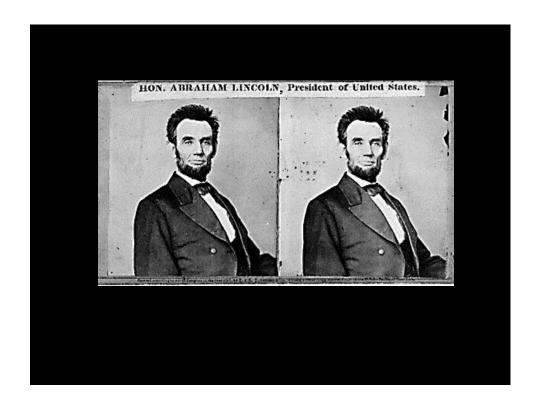
Noah Snavely

Lecture 16: Stereo

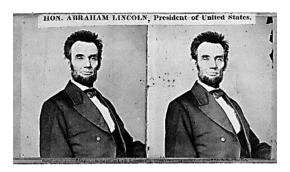
Single image stereogram, by Niklas Een

Readings

• Szeliski, Chapter 10 (through 10.5)

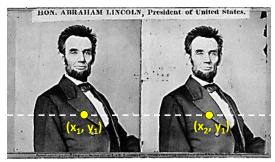


Stereo



- · Given two images from different viewpoints
 - How can we compute the depth of each point in the image?
 - Based on how much each pixel moves between the two images

Epipolar geometry



epipolar lines

Two images captured by a purely horizontal translating camera (rectified stereo pair)

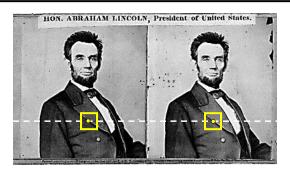
 x_2-x_1 = the *disparity* of pixel (x_1, y_1)

Stereo matching algorithms

Match Pixels in Conjugate Epipolar Lines

- · Assume brightness constancy
- · This is a tough problem
- · Numerous approaches
 - A good survey and evaluation: http://www.middlebury.edu/stereo/

Your basic stereo algorithm



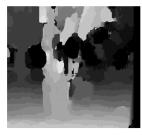
For each epipolar line

For each pixel in the left image

- · compare with every pixel on same epipolar line in right image
- · pick pixel with minimum match cost

Improvement: match windows

Window size



W = 3

W = 20

Effect of window size

- Smaller window
- Larger window
 - +
 - _

Better results with adaptive window

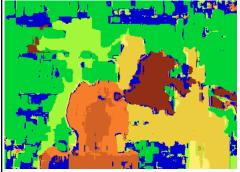
- T. Kanade and M. Okutomi, <u>A Stereo Matching</u>
 Algorithm with an Adaptive <u>Window: Theory and Experiment</u>,, Proc. International Conference on Robotics and Automation, 1991.
- D. Scharstein and R. Szeliski. Stereo matching with nonlinear diffusion. International Journal of Computer Vision, 28(2):155-174, July 1998

Stereo results

- · Data from University of Tsukuba
- · Similar results on other images without ground truth

Ground truth

Results with window search



Window-based matching (best window size)

Ground truth

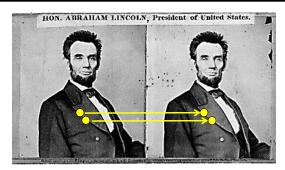
Better methods exist...

State of the art method

Boykov et al., <u>Fast Approximate Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999. Ground truth

For the latest and greatest: http://www.middlebury.edu/stereo/

Stereo as energy minimization



What defines a good stereo correspondence?

- 1. Match quality
 - Want each pixel to find a good match in the other image
- 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

Stereo as energy minimization

- Find disparity map d that minimizes an energy function
- Simple pixel / window matching

$$E(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$

$$C(x,y,d(x,y)) = \underset{\text{windows }\textit{I}(x,\textit{y})}{\text{SSD distance between}} \underset{\textit{d}(x,\textit{y}),\textit{y})}{\text{sold}} \textit{J}(x + d(x,\textit{y}),\textit{y})$$

Stereo as energy minimization $J(x, y) \qquad J(x, y)$ y = 141 $C(x, y, d); \text{ the } disparity space image (DSI)}$

Stereo as energy minimization

Simple pixel / window matching: choose the minimum of each column in the DSI independently:

$$d(x,y) = \underset{d'}{\operatorname{arg\,min}} C(x,y,d')$$

Stereo as energy minimization

Better objective function

$$E(d) = \underbrace{E_d(d)}_{\text{match cost}} + \lambda E_s(d)$$

$$\underbrace{E_s(d)}_{\text{smoothness cost}}$$

Want each pixel to find a good Adjacent pixels should (usually) move about the same amount

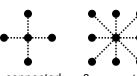
Stereo as energy minimization

$$E(d) = E_d(d) + \lambda E_s(d)$$

match cost:
$$E_d(d) = \sum_{(x,y) \in I} C(x,y,d(x,y))$$

smoothness
$$E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p,d_q)$$
 cost:

 $\mathcal E$: set of neighboring pixels



4-connected neighborhood

8-connected neighborhood

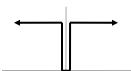
Smoothness cost

$$E_s(d) = \sum_{(p,q)\in\mathcal{E}} V(d_p, d_q)$$

How do we choose *V*?

$$V(d_p,d_q) = |d_p - d_q|$$
 L_1 distance

$$V(d_p, d_q) = \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases}$$



"Potts model"

Dynamic programming

$$E(d) = E_d(d) + \lambda E_s(d)$$

Can minimize this independently per scanline using dynamic programming (DP)

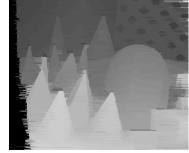
D(x,y,d) : minimum cost of solution such that d(x,y) = d

$$D(x, y, d) = C(x, y, d) + \min_{d'} \{D(x - 1, y, d') + \lambda |d - d'|\}$$

Dynamic programming

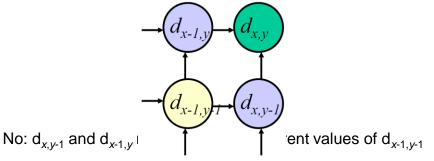
Finds "smooth" path through DPI from left to right

Dynamic Programming



Dynamic programming

Can we apply this trick in 2D as well?



Slide credit: D. Huttenloche

Stereo as a minimization problem

$$E(d) = E_d(d) + \lambda E_s(d)$$

The 2D problem has many local minima

· Gradient descent doesn't work well

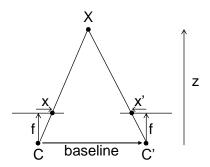
And a large search space

- *n* x *m* image w/ *k* disparities has *k*^{nm} possible solutions
- · Finding the global minimum is NP-hard in general

Good approximations exist... we'll see this soon

Questions?

Depth from disparity



$$disparity = x - x' = \frac{baseline*f}{z}$$

Real-time stereo

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Used for robot navigation (and other tasks)

• Several software-based real-time stereo techniques have been developed (most based on simple discrete search)

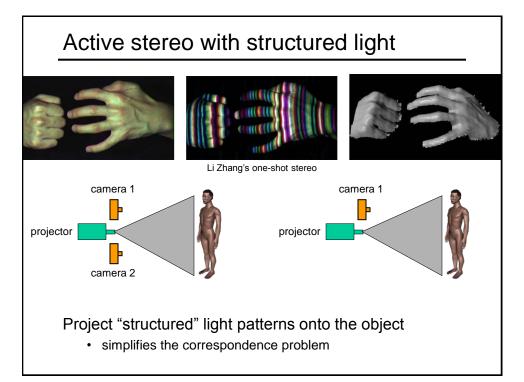
Stereo reconstruction pipeline

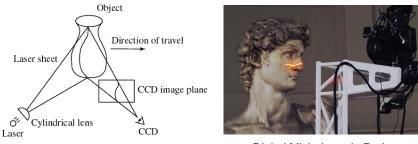
Steps

- · Calibrate cameras
- · Rectify images
- · Compute disparity
- · Estimate depth

What will cause errors?

- · Camera calibration errors
- · Poor image resolution
- Occlusions
- · Violations of brightness constancy (specular reflections)
- Large motions
- · Low-contrast image regions





Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

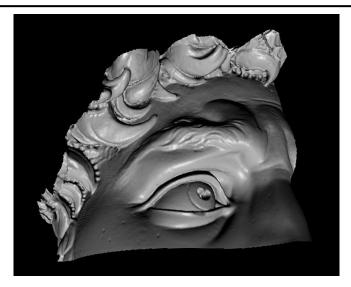
Optical triangulation

- · Project a single stripe of laser light
- · Scan it across the surface of the object
- · This is a very precise version of structured light scanning

Laser scanned models

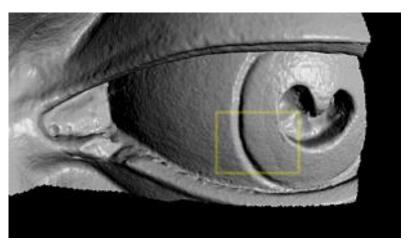
The Digital Michelangelo Project, Levoy et al.

Laser scanned models



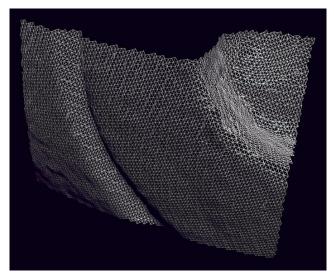
The Digital Michelangelo Project, Levoy et al.

Laser scanned models



The Digital Michelangelo Project, Levoy et al.

Laser scanned models



The Digital Michelangelo Project, Levoy et al.