CS4670/5760: Computer Vision

 Noah SnavelyLecture 12: Robust Fitting and RANSAC

Announcements

- Project 2 deadline extended to Wednesday at 5:59pm
- Quiz on Friday

Reading

- Szeliski: Chapter 6.1.4

Homographies

Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B
2. Match features between A and B
3. Compute homography between A and B using least squares on set of matches

What could go wrong?

Robustness

- Let's consider a simpler example... linear regression

Problem: Fit a line to these datapoints

Least squares fit

- How can we fix this?

We need a better cost function...

- Suggestions?

Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
- "Agree" = within a small distance of the line
- I.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers

Counting inliers

Inliers: 3

Counting inliers

How do we find the best line?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
- Try out many lines, keep the best one
- Which lines?

Translations

RAndom SAmple Consensus

RAndom SAmple Consensus

RAndom SAmple Consensus

RANSAC

- Idea:
- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are $<50 \%$ outliers
- "All good matches are alike; every bad match is bad in its own way."
- Tolstoy via Alyosha Efros

RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
- How many rounds do we need?

RANSAC
 0

- Back to linear regression
- How do we generate a hypothesis?

RANSAC

- Back to linear regression
- How do we generate a hypothesis?

RANSAC

- General version:

1. Randomly choose s samples

- Typically $s=$ minimum sample size that lets you fit a model

2. Fit a model (e.g., line) to those samples
3. Count the number of inliers that approximately fit the model
4. Repeat N times
5. Choose the model that has the largest set of inliers

How many rounds?

- If we have to choose s samples each time
- with an outlier ratio e
- and we want the right answer with probability p

proportion of outliers e								
s	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

How big is s ?

- For alignment, depends on the motion model
- Here, each sample is a correspondence (pair of matching points)

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

RANSAC pros and cons

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

Final step: least squares fit

RANSAC

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes
- E.g., Hough transforms...

Hough transform

Panoramas

- Now we know how to create panoramas!
- Given two images:
- Step 1: Detect features
- Step 2: Match features
- Step 3: Compute a homography using RANSAC
- Step 4: Combine the images together (somehow)
- What if we have more than two images?

Can we use homographies to create a 360 panorama?

- In order to figure this out, we need to learn what a camera is

360 panorama

