CS4670/5760: Computer Vision
Noah Snavely

Lecture 10: Image alignment

BAL
§ N
N
"] ol RS s SN
I Iy |
4] 5
" [
i
V

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

Reading

* Szeliski: Chapter 6.1

9/17/2012

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

All 2D Linear Transformations

* Linear transformations are combinations of ...

— Scale, ,
Rotation, X — a bjx
Shear, and y' c dfy
Mirror
* Properties of linear transformations:

— Origin maps to origin
— Lines map to lines

Parallel lines remain parallel
Ratios are preserved
Closed under composition

KEBH M

Affine Transformations

» Affine transformations are combinations of ...

— Linear transformations, and X' a b c|x
— Translations y|=|d e fly
w 0 0 1|w

* Properties of affine transformations:
— Origin does not necessarily map to origin
— Lines map to lines
— Parallel lines remain parallel
— Ratios are preserved
— Closed under composition

9/17/2012

Projective Transformations aka
Homographies aka Planar Perspective Maps

a b ¢
H=|d e f
g h 1

Called a homography
(or planar perspective map)

Homographies

a b ¢ X
vol=1d e f|ly
w’ g h 1 1
[axt+bytc

What happens when gr+hy+1

the denominator is 0? -~ dr+ey+f

gr+hy+1

1

9/17/2012

Points at infinity

A

A
|
|
|
1
|
|
|
|
1
|

Image warping with homographies

image plane in front

black area
where no pixel
maps to

I

!

9/17/2012

Homographies

2D image transformations

imilari projective
translation|
¥

mvm -

Euclidean

X
| Name Matrix #D.O.F. | Preserves: Icon
translation { It] .\ 2 orientation + -+ | ||
rigid (Euclidean) [R | t J‘) . 3 lengths + - - - O
similarity { sR | t]., N 4 angles + - O
affine [A],.,M 6 parallelism +- - - L/
projective { H],{M 8 straight lines E—|

These transformations are a nested set of groups
¢ Closed under composition and inverse is a member

9/17/2012

9/17/2012

Questions?

Image Warping

* Given a coordinate xform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute an
xformed image g(x’,y’) = f(T(x,y))?

Forward Warping

* Send each pixel f(x) to its corresponding
location (x’,y’) = T(x,y) in g(x’,y’)
e What if pixel lands “between” two pixels?

Forward Warping

* Send each pixel f(x,y) to its corresponding
location x” = h(x,y) in g(x’y’)
e What if pixel lands “between” two pixels?

e Answer: add “contribution” to several pixels,
normalize later (splatting)

e Can still result in holes

T 4 7
y (xy) y

L L

fxy) X gy

-

9/17/2012

9/17/2012

Inverse Warping

* Get each pixel g(x,y’) from its corresponding
location (x,y) = TX(x,y) in f(x,y)
e Requires taking the inverse of the transform
e What if pixel comes from “between” two pixels?

Inverse Warping

* Get each pixel g(x’) from its corresponding
location x” = h(x) in f(x)

What if pixel comes from “between” two pixels?
e Answer: resample color value from interpolated
(prefiltered) source image

y y
L L

fixy) X gy

9/17/2012

Interpolation

* Possible interpolation filters:
— nearest neighbor

— bilinear
— bicubic (interpolating)
—sinc

* Needed to prevent “jaggies”
and “texture crawl”

(with prefiltering)

Computing transformations

* Given a set of matches between images A and B
— How can we compute the transform T from A to B?

— Find transform T that best “agrees” with the matches

Computing transformations

Simple case: translations

How do we solve for
(Xt: Yt) ?

9/17/2012

10

Simple case: translations

q

,
T —.

.

L /
Yi+ty¥t = Y,
* System of linear equations

— What are the knowns? Unknowns?
— How many unknowns? How many equations (per match)?

9/17/2012

11

Another view

[t

* Problem: more equations than unknowns
— “Overdetermined” system of equations
— We will find the least squares solution

Least squares formulation
* For each point (x;,¥;)
X, +Xy = X
YiTtyYt = Y,
* we define the residuals as
re (%) = (X X)) — X

ry,(yt) = (yi+yi) -y,

9/17/2012

12

Least squares formulation

* Goal: minimize sum of squared residuals
n

C(xe,y1) = Y (rx, (xe)* + 1y, (70)?)

1=1

* “Least squares” solution

* For translations, is equal to mean displacement

Least squares formulation

* Can also write as a matrix equation

10 Ty — x|
0 1 —
10 ThH — T2
0 1 Tel | yy— e
: Yt .

1 0 x, — Ty

B 1] L Yn — Yn i
2nx2 2x1 2nx1

9/17/2012

13

Least squares

At=Db

e Find t that minimizes
|At — b]|?
* To solve, form the normal equations
A"At=A"D
—1
t=(A"A) A'Db

Questions?

9/17/2012

14

