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CS4670 / 5670: Computer Vision
Noah Snavely

Lecture 6: Harris corners

Announcements

Assignment 1 due Sunday

Turn-in by 11:59pm Sunday evening

Demo sessions on Monday, signup on CMS
Artifact due by Wednesday night




Announcements

* Additional TAs:
— Kyle Wilson
— Gagik Hakobyan

Reading

e Szeliski: 4.1
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Feature extraction: Corners and blobs

Local measure of feature uniqueness

* How does the window change when you shift it?

* Shifting the window in any direction causes a big
change

=

“flat” region: “edge”: “corner”:
no change in all no change along the significant change in
directions edge direction all directions

Credit: S. Seitz, D. Frolova, D. Simakov




Harris corner detection: the math

Consider shifting the window W by (u,v)
e how do the pixels in W change?

e compare each pixel before and after by
summing up the squared differences (SSD)

e this defines an SSD “error” E(u,v):

E(uv) = > ((x+uy+v)-I(zy)

(x,y)eW

Harris corner detection: the math

Using the small motion assumption,
replace | with a linear approximation

al
(Shorthand: I, = —— )

E(wv) = > ((x+uy+v)-I(zy)

(z,y)EW

Z (L(x,y) + Lo(x,y)u+ Ly(z,y)v — I(x, y))2
(x,y)eW

Z (I.rr(;rs y)'ll‘ + I’L’(;E‘-‘ y)’l})g

(z,y)eW

e

Q
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Corner detection: the math

E(’LL, ’U) ~ Z (Lx(z, y)u + I (x, y)fy)z

(z,y)eW

Q

Z (I£u2 + 21, I uv + I§U2)
(zy)eW

~ Au’® + 2Buv + Cv?
S S B B ST S
(x,y)EW (z,y)eW (z,y)EW

* Thus, E(u,v) is locally approximated as a quadratic form

The second moment matrix

The surface E(u,v) is locally approximated by a quadratic form.

E(u,v) =~ Au®+2Buv + Cv?

A B U
el 8]
A= > I

(z,y)eW
B= Y LI,

(z,y)eW
C= > 1

(x,y)eW

Let’s try to understand its shape.
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General case

The shape of H tells us something about the distribution
of gradients around a pixel

We can visualize H as an ellipse with axis lengths
determined by the eigenvalues of H and orientation
determined by the eigenvectors of H

A Mpic eigenvalues of H
E”ipse equation: direction of the max» =¥min

fastest change

u . .
[U V] H { }zconst direction of the
\Y

slowest change

Quick eigenvalue/eigenvector review

The eigenvectors of a matrix A are the vectors x that satisfy:

Ax = \x

The scalar A is the eigenvalue corresponding to x
— The eigenvalues are found by solving:

det(A—\) =0

— Inourcase, A =His a2x2 matrix, so we have

hii =X  hi -
det{ hat hzz*A]_O

— The solution:

)‘i = % |:(h11 + h22) + \/4h12h21 + (hll — h22)2

Once you know A, you find x by solving

hi1 — A hi2 | _o
hat haz — A Yy
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Corner detection: the math

Euv)~[u v ] g g :i

\_'_I

Xmm
HImax = )\maxmmax

Xmax
H-L'min = Am'm-Ln‘lin

Eigenvalues and eigenvectors of H
¢ Define shift directions with the smallest and largest change in error
® Xna = direction of largest increase in £
® LAnax = @amount of increase in direction x,.,

Xmin = direction of smallest increase in E

* LAnin =amount of increase in direction X,

Corner detection: the math

How are A, Xmaxs Amine @Nd X relevant for feature detection?

* What’s our feature scoring function?

9/8/2012



Corner detection: the math

How are A X A

max’ “*max’

mine aNd X;, relevant for feature detection?
* What’s our feature scoring function?
Want E(u,v) to be large for small shifts in all directions
* the minimum of E(u,v) should be large, over all unit vectors [u v]

* this minimum is given by the smaller eigenvalue (A .. ) of H

min

Interpreting the eigenvalues

}\12 ‘GEdge7’

Classification of image points using eigenvalues of M:
A>>hy/  “Corner” .

Aqand A, are large,
A~ Ay

E increases in all
directions

Aq and A, are small;

E is almost constant j> “Flat”

in all directions region
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Corner detection summary

Here’s what you do
e Compute the gradient at each point in the image
e Create the H matrix from the entries in the gradient
e Compute the eigenvalues.
> threshold)
¢ Choose those points where A, is a local maximum as features

¢ Find points with large response (A

min

Amin

Corner detection summary

Here’s what you do
e Compute the gradient at each point in the image
e Create the H matrix from the entries in the gradient
e Compute the eigenvalues.
> threshold)
| ¢ Choose those points where A .. is a local maximum as features

¢ Find points with large response (A

min

)\min
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The Harris operator

Aminis @ variant of the “Harris operator” for feature detection

A1
A
__ determinant(H)
o trace(H)

e The trace is the sum of the diagonals, i.e., trace(H) = h;; + h,,

e Very similar to A, but less expensive (no square root)

Called the “Harris Corner Detector” or “Harris Operator”
e Lots of other detectors, this is one of the most popular

The Harris operator

Harris
operator

)\min
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Harris detector example
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Threshold (f > value)

Find local maxima of f
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Harris features (in red)

Weighting the derivatives

* |n practice, using a simple window W doesn’t
work too well

Z 2 I
1.1 I
(z,y)eW Y Y

* Instead, we’ll weight each derivative value
based on its distance from the center pixel

2 I.0
H — Z wa:’y |: £r 12’9 :|
o I.1, I,
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Questions?

Image transformations

* Geometric

Rotation

Scale

* Photometric
Intensity change

15



Harris Detector: Invariance Properties

* Rotation

> g
7 A

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

Corner response is invariant to image rotation

Harris Detector: Invariance Properties

 Affine intensity change: | > al +b

v’ Only derivatives are used =>
invariance to intensity shift | > 1 + b

v Intensity scale: | — a |
R M N
threshold /A /'\\/\/.\ / \/’\U

X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change
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