CS4670 / 5670: Computer Vision

Noah Snavely

Lecture 6: Harris corners

Announcements

- Assignment 1 due Sunday
- Turn-in by 11:59pm Sunday evening
- Demo sessions on Monday, signup on CMS
- Artifact due by Wednesday night

Announcements

- Additional TAs:
- Kyle Wilson
- Gagik Hakobyan

Reading

- Szeliski: 4.1

Feature extraction: Corners and blobs

Local measure of feature uniqueness

- How does the window change when you shift it?
- Shifting the window in any direction causes a big change

"flat" region: no change in all directions

"edge":
no change along the edge direction

"corner": significant change in all directions

Harris corner detection: the math

Consider shifting the window W by (u, v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)

$$
E(u, v)=\sum_{(x, y) \in W}(I(x+u, y+v)-I(x, y))^{2}
$$

Harris corner detection: the math

Using the small motion assumption, replace I with a linear approximation
(Shorthand: $I_{x}=\frac{\partial I}{\partial x}$)

$$
\begin{aligned}
& E(u, v)=\sum_{(x, y) \in W}(I(x+u, y+v)-I(x, y))^{2} \\
\approx & \sum_{(x, y) \in W}\left(I(x, y)+I_{x}(x, y) u+I_{y}(x, y) v-I(x, y)\right)^{2} \\
\approx & \sum_{(x, y) \in W}\left(I_{x}(x, y) u+I_{y}(x, y) v\right)^{2}
\end{aligned}
$$

Corner detection: the math

$$
\begin{aligned}
E(u, v) & \approx \sum_{(x, y) \in W}\left(I_{x}(x, y) u+I_{y}(x, y) v\right)^{2} \\
& \approx \sum_{(x, y) \in W}\left(I_{x}^{2} u^{2}+2 I_{x} I_{y} u v+I_{y}^{2} v^{2}\right) \\
& \approx A u^{2}+2 B u v+C v^{2} \\
A= & \sum_{(x, y) \in W} I_{x}^{2} \quad B=\sum_{(x, y) \in W} I_{x} I_{y} \quad C=\sum_{(x, y) \in W} I_{y}^{2}
\end{aligned}
$$

- Thus, $E(u, v)$ is locally approximated as a quadratic form

The second moment matrix

The surface $E(u, v)$ is locally approximated by a quadratic form.

$$
\begin{aligned}
& E(u, v) \approx A u^{2}+2 B u v+C v^{2} \\
& \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{cc}
A & B \\
B & C
\end{array}\right]}_{H}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& A=\sum_{(x, y) \in W} I_{x}^{2}
\end{aligned}
$$

$$
B=\sum_{(x, y) \in W} I_{x} I_{y}
$$

$$
C=\sum_{(x, y) \in W} I_{y}^{2}
$$

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{H}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
A=\sum_{(x, y) \in W} I_{x}^{2} \\
B=\sum_{(x, y) \in W} I_{x} I_{y} \\
C=\sum_{(x, y) \in W} I_{y}^{2} \\
\text { Horizontal edge: } I_{x}=0
\end{gathered}
$$

$E(u, v) \approx\left[\begin{array}{ll}u & v\end{array}\right] \underbrace{\left[\begin{array}{ll}A & B \\ B & C\end{array}\right]}_{H}\left[\begin{array}{l}u \\ v\end{array}\right]$

General case

The shape of H tells us something about the distribution of gradients around a pixel

We can visualize H as an ellipse with axis lengths determined by the eigenvalues of H and orientation determined by the eigenvectors of H

Ellipse equation:
$\left[\begin{array}{ll}u & v\end{array}\right] H\left[\begin{array}{l}u \\ v\end{array}\right]=$ const

Quick eigenvalue/eigenvector review

The eigenvectors of a matrix \mathbf{A} are the vectors \mathbf{x} that satisfy:

$$
A x=\lambda x
$$

The scalar λ is the eigenvalue corresponding to \mathbf{x}

- The eigenvalues are found by solving:

$$
\operatorname{det}(A-\lambda I)=0
$$

- In our case, $\boldsymbol{A}=\boldsymbol{H}$ is a 2×2 matrix, so we have

$$
\operatorname{det}\left[\begin{array}{cc}
h_{11}-\lambda & h_{12} \\
h_{21} & h_{22}-\lambda
\end{array}\right]=0
$$

- The solution:

$$
\lambda_{ \pm}=\frac{1}{2}\left[\left(h_{11}+h_{22}\right) \pm \sqrt{4 h_{12} h_{21}+\left(h_{11}-h_{22}\right)^{2}}\right]
$$

Once you know λ, you find \mathbf{x} by solving

$$
\left[\begin{array}{cc}
h_{11}-\lambda & h_{12} \\
h_{21} & h_{22}-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=0
$$

Corner detection: the math

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Eigenvalues and eigenvectors of H

- Define shift directions with the smallest and largest change in error
- $\mathrm{x}_{\text {max }}=$ direction of largest increase in E
- $\lambda_{\text {max }}=$ amount of increase in direction $x_{\max }$
- $\mathrm{x}_{\text {min }}=$ direction of smallest increase in E
- $\lambda_{\text {min }}=$ amount of increase in direction $x_{\text {min }}$

Corner detection: the math

How are $\lambda_{\text {max }}, \mathrm{x}_{\text {max }}, \lambda_{\text {min }}$, and $\mathrm{x}_{\text {min }}$ relevant for feature detection?

- What's our feature scoring function?

Corner detection: the math

How are $\lambda_{\text {max }}, x_{\text {max }}, \lambda_{\text {min }}$, and $x_{\text {min }}$ relevant for feature detection?

- What's our feature scoring function?

Want $E(u, v)$ to be large for small shifts in all directions

- the minimum of $E(u, v)$ should be large, over all unit vectors [uv]
- this minimum is given by the smaller eigenvalue $\left(\lambda_{\text {min }}\right)$ of H

Interpreting the eigenvalues

Classification of image points using eigenvalues of M :

Corner detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the H matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response ($\lambda_{\min }>$ threshold)
- Choose those points where $\lambda_{\min }$ is a local maximum as features

I

$\lambda_{\text {max }}$

$\lambda_{\text {min }}$

Corner detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the H matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response ($\lambda_{\min }>$ threshold)
- Choose those points where $\lambda_{\min }$ is a local maximum as features

The Harris operator

$\lambda_{\text {min }}$ is a variant of the "Harris operator" for feature detection

$$
\begin{aligned}
& f=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \\
= & \frac{\operatorname{determinant}(H)}{\operatorname{trace}(H)}
\end{aligned}
$$

- The trace is the sum of the diagonals, i.e., $\operatorname{trace}(H)=h_{11}+h_{22}$
- Very similar to $\lambda_{\text {min }}$ but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

Harris detector example

f value (red high, blue low)

Threshold (f > value)

Find local maxima of f

Harris features (in red)

Weighting the derivatives

- In practice, using a simple window W doesn't work too well

$$
H=\sum_{(x, y) \in W}\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

- Instead, we'll weight each derivative value based on its distance from the center pixel

$$
H=\sum_{(x, y) \in W} w_{x, y}\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

Questions?

Image transformations

- Geometric

- Photometric Intensity change

Harris Detector: Invariance Properties

- Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response is invariant to image rotation

Harris Detector: Invariance Properties

- Affine intensity change: $I \rightarrow a I+b$
\checkmark Only derivatives are used =>
invariance to intensity shift $I \rightarrow I+b$
\checkmark Intensity scale: $I \rightarrow a I$

x (image coordinate)

x (image coordinate)

Partially invariant to affine intensity change

