CS4670: Computer Vision

Noah Snavely

Image Interpolation

Image

Last time:

This image is too big to fit on the screen. How can we generate a half-sized version?

Upsampling

- This image is too small for this screen:
- How can we make it 10 times as big?
- Simplest approach: repeat each row and column 10 times
- ("Nearest neighbor interpolation")

Image interpolation

d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Adapted from: S. Seitz

Image interpolation

d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Adapted from: S. Seitz

Image interpolation

d = 1 in this example

- What if we don't know f?
 - Guess an approximation: \tilde{f}
 - Can be done in a principled way: filtering
 - $\bullet \ \ {\rm Convert} \ F \ \ {\rm to} \ {\rm a} \ {\rm continuous} \ {\rm function} ; \\$

$$f_F(x) = F(rac{x}{d})$$
 when $rac{x}{d}$ is an integer, 0 otherwise

• Reconstruct by convolution with a reconstruction filter, h

$$\tilde{f} = h * f_F$$

Adapted from: S. Seitz

Reconstruction filters

• What does the 2D version of this hat function look like?

Cubic reconstruction filter

Often implemented without cross-correlation

• E.g., http://en.wikipedia.org/wiki/Bilinear interpolation

Better filters give better resampled images

• Bicubic is common choice

4

Image interpolation

Original image: 💹 x 10

Bilinear interpolation

Bicubic interpolation

Image interpolation

Also used for resampling

Questions?	