
8/27/2012

1

Lecture 2: Edge detection

CS4670: Computer Vision
Noah Snavely

From Sandlot Science

Announcements

• Project 1 released, due Friday, September 7

http://www.sandlotscience.com/Contrast/Contrast_frm.htm

8/27/2012

2

Edge detection

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAA

• Convert a 2D image into a set of curves

– Extracts salient features of the scene

– More compact than pixels

Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

8/27/2012

3

Images as functions…

• Edges look like
steep cliffs

Characterizing edges

• An edge is a place of rapid change in the
image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative Source: L. Lazebnik

8/27/2012

4

• How can we differentiate a digital image F[x,y]?

– Option 1: reconstruct a continuous image, f, then
compute the derivative

– Option 2: take discrete derivative (finite difference)

1 -1

How would you implement this as a linear filter?

Image derivatives

-1

1

: :

Source: S. Seitz

The gradient points in the direction of most rapid increase in intensity

Image gradient

• The gradient of an image:

The edge strength is given by the gradient magnitude:

The gradient direction is given by:

• how does this relate to the direction of the edge?

Source: Steve Seitz

8/27/2012

5

Image gradient

Source: L. Lazebnik

Effects of noise

Where is the edge?
Source: S. Seitz

Noisy input image

8/27/2012

6

Solution: smooth first

f

h

f * h

Source: S. Seitz

To find edges, look for peaks in

• Differentiation is convolution, and convolution
is associative:

• This saves us one operation:

Associative property of convolution

f

Source: S. Seitz

8/27/2012

7

2D edge detection filters

Gaussian
derivative of Gaussian (x)

Derivative of Gaussian filter

x-direction y-direction

8/27/2012

8

The Sobel operator

• Common approximation of derivative of Gaussian

-1 0 1

-2 0 2

-1 0 1

1 2 1

0 0 0

-1 -2 -1

• The standard defn. of the Sobel operator omits the 1/8 term
– doesn’t make a difference for edge detection

– the 1/8 term is needed to get the right gradient value

Sobel operator: example

Source: Wikipedia

8/27/2012

9

Example

• original image (Lena)

Finding edges

gradient magnitude

8/27/2012

10

thresholding

Finding edges

where is the edge?

• Check if pixel is local maximum along gradient direction

– requires interpolating pixels p and r

Non-maximum supression

8/27/2012

11

thresholding

Finding edges

thinning
(non-maximum suppression)

Finding edges

8/27/2012

12

Canny edge detector

1. Filter image with derivative of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression

4. Linking and thresholding (hysteresis):
– Define two thresholds: low and high

– Use the high threshold to start edge curves and
the low threshold to continue them

Source: D. Lowe, L. Fei-Fei

MATLAB: edge(image,‘canny’)

Canny edge detector

• Still one of the most widely used edge
detectors in computer vision

• Depends on several parameters:

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.

: width of the Gaussian blur

high threshold
low threshold

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

8/27/2012

13

Canny edge detector

Canny with Canny with original

• The choice of depends on desired behavior

– large detects “large-scale” edges

– small detects fine edges

Source: S. Seitz

Scale space (Witkin 83)

• Properties of scale space (w/ Gaussian smoothing)

– edge position may shift with increasing scale ()

– two edges may merge with increasing scale

– an edge may not split into two with increasing scale

larger

Gaussian filtered signal

first derivative peaks

8/27/2012

14

Questions?

Image Scissors

• Today’s Readings
– Intelligent Scissors, Mortensen et. al, SIGGRAPH 1995

Aging Helen Mirren

http://www.cs.washington.edu/education/courses/576/03sp/readings/mort-sigg95.pdf
http://www.freakingnews.com/Aging-Helen-Mirren-Pictures-39836.asp
http://www.freakingnews.com/Aging-Helen-Mirren-Pictures-39836.asp

8/27/2012

15

Extracting objects

• How could this be done?
– hard to do manually

– hard to do automatically (“image
segmentation”)

– pretty easy to do semi-automatically

Intelligent Scissors (demo)

8/27/2012

16

Intelligent Scissors

• Approach answers basic question

– Q: how to find a path from seed to mouse
that follows object boundary as closely as
possible?

– A: define a path that stays as close as possible
to edges

Intelligent Scissors
• Basic Idea

– Define edge score for each pixel

• edge pixels have low cost

– Find lowest cost path from seed to mouse

seed

mouse

Questions
• How to define costs?

• How to find the path?

8/27/2012

17

Let’s look at this more closely

• Treat the image as a graph

Graph

• node for every pixel p

• link between every adjacent pair of pixels, p,q

• cost c for each link

Note: each link has a cost

• this is a little different than the figure before where each pixel had

a cost

p

q

c

• good (low-cost) links follow the intensity edge

– want intensity to change rapidly to the link

• c – |intensity of r – intensity of s|

Defining the costs

Want to hug image edges: how to define cost of a link?

p

q

c

r

s

8/27/2012

18

• c can be computed using a cross-correlation filter

– assume it is centered at p

p

q

c

r

s

Defining the costs

Defining the costs

1

-1

-1 -1

1 1

c can be computed using a cross-correlation filter

• assume it is centered at p

A couple more modifications

• Scale the filter response by length of link c. Why?

• Make c positive

– Set c = (max-|filter response|*length)

– where max = maximum |filter response|*length over all pixels in the image

p

q

c

r

s

w

8/27/2012

19

Dijkstra’s shortest path algorithm

0

5

3 1

3 3

4 9

2

Algorithm

1. init node costs to , set p = seed point, cost(p) = 0

2. expand p as follows:

 for each of p’s neighbors q that are not expanded

 set cost(q) = min(cost(p) + cpq, cost(q))

link cost

Dijkstra’s shortest path algorithm

 if q’s cost changed, make q point back to p

 put q on the ACTIVE list (if not already there)

4

1 0

5

3

3 2 3

9

5

3 1

3 3

4
9

2

1 1

Algorithm

1. init node costs to , set p = seed point, cost(p) = 0

2. expand p as follows:

 for each of p’s neighbors q that are not expanded

 set cost(q) = min(cost(p) + cpq, cost(q))

8/27/2012

20

4

1 0

5

3

3 2 3

9

5

3 1

3 3

4
9

2

1

5

2

3 3

3
2

4

3. set r = node with minimum cost on the ACTIVE list

4. repeat Step 2 for p = r

Dijkstra’s shortest path algorithm

Algorithm

1. init node costs to , set p = seed point, cost(p) = 0

2. expand p as follows:

 for each of p’s neighbors q that are not expanded

 set cost(q) = min(cost(p) + cpq, cost(q))

 if q’s cost changed, make q point back to p

 put q on the ACTIVE list (if not already there)

3

1 0

5

3

3 2 3

6

5

3 1

3 3

4
9

2

4

3 1

4

5

2

3 3

3
2

4

Dijkstra’s shortest path algorithm

3. set r = node with minimum cost on the ACTIVE list

4. repeat Step 2 for p = r

Algorithm

1. init node costs to , set p = seed point, cost(p) = 0

2. expand p as follows:

 for each of p’s neighbors q that are not expanded

 set cost(q) = min(cost(p) + cpq, cost(q))

 if q’s cost changed, make q point back to p

 put q on the ACTIVE list (if not already there)

8/27/2012

21

Dijkstra’s shortest path algorithm

• Properties
– It computes the minimum cost path from the seed to

every node in the graph. This set of minimum paths
is represented as a tree

– Running time, with N pixels:
• O(N2) time if you use an active list
• O(N log N) if you use an active priority queue (heap)
• takes fraction of a second for a typical (640x480) image

– Once this tree is computed once, we can extract the
optimal path from any point to the seed in O(N) time.

• it runs in real time as the mouse moves

– What happens when the user specifies a new seed?

Example Result

Peter Davis

http://www.cs.washington.edu/education/courses/cse455/06wi/projects/project1/artifacts/pediddle/index.html
http://www.cs.washington.edu/education/courses/cse455/06wi/projects/project1/artifacts/pediddle/index.html

8/27/2012

22

Questions?

