CS4670: Computer Vision

 Noah SnavelyLecture 2: Edge detection

From Sandlot Science

Announcements

- Project 1 released, due Friday, September 7

Edge detection

- Convert a 2D image into a set of curves
- Extracts salient features of the scene
- More compact than pixels

Origin of Edges

- Edges are caused by a variety of factors

Images as functions...

- Edges look like steep cliffs

Characterizing edges

- An edge is a place of rapid change in the image intensity function

intensity function
(along horizontal scanline)

Image derivatives

- How can we differentiate a digital image $\mathrm{F}[\mathrm{x}, \mathrm{y}]$?
- Option 1: reconstruct a continuous image, f, then compute the derivative
- Option 2: take discrete derivative (finite difference)

$$
\frac{\partial f}{\partial x}[x, y] \approx F[x+1, y]-F[x, y]
$$

How would you implement this as a linear filter?

Image gradient

- The gradient of an image: $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid increase in intensity

The edge strength is given by the gradient magnitude:

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

The gradient direction is given by:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

- how does this relate to the direction of the edge?

Image gradient

Solution: smooth first

To find edges, look for peaks in $\frac{d}{d x}(f * h)$

Associative property of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{d x}(f * h)=f * \frac{d}{d x} h$
- This saves us one operation:

2D edge detection filters

Gaussian
$h_{\sigma}(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}}$

derivative of Gaussian (x)

$$
\frac{\partial}{\partial x} h_{\sigma}(u, v)
$$

Derivative of Gaussian filter

x-direction

The Sobel operator

- Common approximation of derivative of Gaussian

$\frac{1}{8}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -2 | 0 | 2 |
| -1 | 0 | 1 |
| s_{x} | | |

$\frac{1}{8}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| -1 | -2 | -1 |
| $s y$ | | |

- The standard defn. of the Sobel operator omits the $1 / 8$ term
- doesn't make a difference for edge detection
- the $1 / 8$ term is needed to get the right gradient value

Sobel operator: example

Example

- original image (Lena)

Finding edges

gradient magnitude

Finding edges

thresholding

Non-maximum supression

- Check if pixel is local maximum along gradient direction
- requires interpolating pixels p and r

Finding edges

thresholding

Finding edges

thinning
(non-maximum suppression)

Canny edge detector
 MATLAB: edge (image, 'canny')

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression
4. Linking and thresholding (hysteresis):

- Define two thresholds: low and high
- Use the high threshold to start edge curves and the low threshold to continue them

Canny edge detector

- Still one of the most widely used edge detectors in computer vision
J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
- Depends on several parameters:
σ : width of the Gaussian blur
high threshold
low threshold

- The choice of σ depends on desired behavior
- large σ detects "large-scale" edges
- small σ detects fine edges

Scale space (witikin 83)

larger σ
$\sigma \uparrow$

Gaussian filtered signal

- Properties of scale space (w/ Gaussian smoothing)
- edge position may shift with increasing scale (σ)
- two edges may merge with increasing scale
- an edge may not split into two with increasing scale

Questions?

Image Scissors

- Today's Readings
- Intelligent Scissors, Mortensen et. al, SIGGRAPH 1995

Extracting objects

- How could this be done?
- hard to do manually
- hard to do automatically ("image segmentation")
- pretty easy to do semi-automatically

Intelligent Scissors (demo)

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions $\left(t_{0}, t_{1}\right.$, and $\left.t_{2}\right)$ are shown in green.

Intelligent Scissors

- Approach answers basic question
-Q : how to find a path from seed to mouse that follows object boundary as closely as possible?
- A: define a path that stays as close as possible to edges

Intelligent Scissors

- Basic Idea
- Define edge score for each pixel
- edge pixels have low cost
- Find lowest cost path from seed to mouse

Questions

- How to define costs?
- How to find the path?

Let's look at this more closely

- Treat the image as a graph

Graph

- node for every pixel p

- link between every adjacent pair of pixels, $\mathbf{p , q}$
- cost c for each link

Note: each link has a cost

- this is a little different than the figure before where each pixel had a cost

Defining the costs

Want to hug image edges: how to define cost of a link?

- good (low-cost) links follow the intensity edge
- want intensity to change rapidly \perp to the link
- $c \approx-\frac{1}{\sqrt{2}}$ |intensity of r - intensity of $s \mid$

Defining the costs

- c can be computed using a cross-correlation filter
- assume it is centered at p

Dijkstra's shortest path algorithm

4

5
 link cost

 3

Algorithm

1. init node costs to ∞, set $p=$ seed point, $\operatorname{cost}(p)=0$
2. expand p as follows:
for each of p's neighbors q that are not expanded set $\operatorname{cost}(\mathrm{q})=\min \left(\operatorname{cost}(\mathrm{p})+\mathrm{c}_{\mathrm{pq}}, \operatorname{cost}(\mathrm{q})\right)$

Dijkstra's shortest path algorithm

Algorithm

1. init node costs to ∞, set $p=$ seed point, $\operatorname{cost}(p)=0$
2. expand p as follows:
for each of p's neighbors q that are not expanded set $\operatorname{cost}(\mathrm{q})=\min \left(\operatorname{cost}(\mathrm{p})+\mathrm{c}_{\mathrm{pq}}, \operatorname{cost}(\mathrm{q})\right)$
if q's cost changed, make q point back to p
put q on the ACTIVE list (if not already there)

Dijkstra's shortest path algorithm

Algorithm

1. init node costs to ∞, set $p=$ seed point, $\operatorname{cost}(p)=0$
2. expand p as follows:
for each of p 's neighbors q that are not expanded
set $\operatorname{cost}(q)=\min \left(\operatorname{cost}(p)+c_{p q}, \operatorname{cost}(q)\right)$
if q's cost changed, make q point back to p put q on the ACTIVE list (if not already there)
3. set $r=$ node with minimum cost on the ACTIVE list
4. repeat Step 2 for $p=r$

Dijkstra's shortest path algorithm

Algorithm

1. init node costs to ∞, set $p=$ seed point, $\operatorname{cost}(p)=0$
2. expand p as follows:
for each of p's neighbors q that are not expanded
set $\operatorname{cost}(q)=\min \left(\operatorname{cost}(p)+c_{p q}, \operatorname{cost}(q)\right)$
if q's cost changed, make q point back to p
put q on the ACTIVE list (if not already there)
3. set $r=$ node with minimum cost on the ACTIVE list
4. repeat Step 2 for $p=r$

Dijkstra's shortest path algorithm

- Properties
- It computes the minimum cost path from the seed to every node in the graph. This set of minimum paths is represented as a tree
- Running time, with N pixels:
- $\mathrm{O}\left(\mathrm{N}^{2}\right)$ time if you use an active list
- $\mathrm{O}(\mathrm{N} \log \mathrm{N}$) if you use an active priority queue (heap)
- takes fraction of a second for a typical (640×480) image
- Once this tree is computed once, we can extract the optimal path from any point to the seed in $\mathrm{O}(\mathrm{N})$ time.
- it runs in real time as the mouse moves
- What happens when the user specifies a new seed?

Example Result

Peter Davis

Questions?

