

Why is computer vision difficult?

Intra-class variation

Background clutter

Motion (Source: S. Lazebnik)

Occlusion

But there are lots of cues we can exploit...

Bottom line

- Perception is an inherently ambiguous problem
- Many different 3D scenes could have given rise to a particular 2D picture

- We often need to use prior knowledge about the structure of the world

Course overview (tentative)

1. Low-level vision

- image processing, edge detection, feature detection, cameras, image formation

2. Geometry and algorithms

- projective geometry, stereo, structure from motion, Markov random fields

3. Recognition

- face detection / recognition, category recognition, segmentation

4. Light, color, and reflectance
5. Advanced topics

Projects (tentative)

- Roughly five projects
- First one will be done solo, others in groups
- You can discuss the projects on a whiteboard, but all code must be your (or your group's) own
- First project to be released today or tomorrow

Project: Image Scissors

Project: Feature detection and matching

Project: Creating panoramas

Project: Recognition

Location recognition

Object category recognition

Grading

- Occasional quizzes (at the beginning of class)
- One prelim, one final exam
- Rough grade breakdown:
- Quizzes: 5\%
- Midterm: 15\%
- Programming projects: 60\%
- Final exam: 15\%

Late policy

- Two "late days" will be available for the semester
- Late projects will be penalized by 25% for each day it is late, and no extra credit will be awarded.

Questions?

CS4670/5670: Intro to Computer Vision

 Noah SnavelyLecture 1: Images and image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

CS4670: Computer Vision

Noah Snavely

Lecture 1: Images and image filtering

CS4670: Computer Vision

 Noah Snavely
Lecture 1: Images and image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

CS4670: Computer Vision

Noah Snavely

Lecture 1: Images and image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

Reading

- Szeliski, Chapter 3.1-3.2

What is an image?

What is an image?

- A grid (matrix) of intensity values

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: $0=$ black, $255=$ white)

What is an image?

- We can think of a (grayscale) image as a function, f, from R^{2} to R :
$-f(x, y)$ gives the intensity at position (x, y)

snoop

3D view

- A digital image is a discrete (sampled, quantized) version of this function

Image transformations

- As with any function, we can apply operators to an image

$g(x, y)=f(x, y)+20$

$g(x, y)=f(-x, y)$
- We'll talk about a special kind of operator, convolution (linear filtering)

Question: Noise reduction

- Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

Image filtering

- Modify the pixels in an image based on some function of a local neighborhood of each pixel

10	5	3
4	5	1
1	1	7

Local image data

Some function

Modified image data

Linear filtering

- One simple version: linear filtering (cross-correlation, convolution)
- Replace each pixel by a linear combination (a weighted sum) of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

10	5	3
4	6	1
1	1	8

Local image data

0	0	0
0	0.5	0
0	1	0.5

kernel

Modified image data

Cross-correlation

Let F be the image, H be the kernel (of size $2 k+1 \times 2 k+1$), and G be the output image
$G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]$
This is called a cross-correlation operation:

$$
G=H \otimes F
$$

- Can think of as a "dot product" between local neighborhood and kernel for each pixel

Convolution

- Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
$$

This is called a convolution operation:

$$
G=H * F
$$

- Convolution is commutative and associative

Convolution

Mean filtering

Linear filters: examples

Original

Identical image

Linear filters: examples

Original

Shifted left By 1 pixel

Linear filters: examples

Original

Blur (with a mean filter)

Linear filters: examples

Original

Sharpening

before

after

Smoothing with box filter revisited

Gaussian Kernel

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

Gaussian filters

Mean vs. Gaussian filtering

-

Gaussian filter

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian

- Convolving twice with Gaussian kernel of width σ = convolving once with kernel of width $\sigma \sqrt{2}$

Sharpening revisited

- What does blurring take away?

Let's add it back:

Sharpen filter

$$
\underset{\uparrow}{F}+\alpha(F-\underbrace{F * H}_{\begin{array}{c}
\text { blurred } \\
\text { image }
\end{array}})
$$

scaled impulse

Gaussian

"Optical" Convolution

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html

Questions?

- For next time:
- Read Szeliski, Chapter 3.1-3.2

