CS4670: Computer Vision

 Noah Snavely
Lecture 31: Photometric stereo

What happens when a light ray hits an object?

Some of the light gets absorbed

- converted to other forms of energy (e.g., heat)

Some gets transmitted through the object

- possibly bent, through "refraction"
- a transmitted ray could possible bounce back

Some gets reflected

- as we saw before, it could be reflected in multiple directions (possibly all directions) at once

Classic reflection behavior

The BRDF

The Bidirectional Reflection Distribution Function

- Given an incoming ray (θ_{i}, ϕ_{i}) and outgoing ray (θ_{e}, ϕ_{e}) what proportion of the incoming light is reflected along outgoing ray?

Answer given by the BRDF: $\rho\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)$

Constraints on the BRDF

Energy conservation

- Quantity of outgoing light \leq quantity of incident light
- integral of BRDF ≤ 1

Helmholtz reciprocity

- reversing the path of light produces the same reflectance

Diffuse reflection

Diffuse reflection governed by Lambert's law

- Viewed brightness does not depend on viewing direction
- Brightness does depend on direction of illumination
- This is the model most often used in computer vision
$\mathbf{L}, \mathbf{N}, \mathbf{V}$ unit vectors
$\mathrm{I}_{\mathrm{e}}=$ outgoing radiance
$\mathrm{I}_{\mathrm{i}}=$ incoming radiance
Lambert's Law: $I_{e}=k_{d} \mathbf{N} \cdot \mathbf{L} I_{i}$ k_{d} is called albedo BRDF for Lambertian surface

$$
\rho\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)=k_{d} \cos \theta_{i}
$$

Diffuse reflection

Demo

http://www.math.montana.edu/frankw/ccp/multiworld/twothree/lighting/applet1.htm http://www.math.montana.edu/frankw/ccp/multiworld/twothree/lighting/learn2.htm

Specular reflection

For a perfect mirror, light is reflected about \mathbf{N}

$$
I_{e}=\left\{\begin{array}{cc}
I_{i} & \text { if } \mathbf{V}=\mathbf{R} \\
0 & \text { otherwise }
\end{array}\right.
$$

Near-perfect mirrors have a highlight around \mathbf{R} - common model: $I_{e}=k_{s}(\mathbf{V} \cdot \mathbf{R})^{n_{s}} I_{i}$

Specular reflection

Moving the light source

Changing n_{s}

Photometric Stereo

Merle Norman Cosmetics, Los Angeles

Readings

- R. Woodham, Photometric Method for Determining Surface Orientation from Multiple Images. Optical Engineering 19(1)139-144 (1980). (PDF)

Diffuse reflection

$$
R_{e}=k_{d} \mathbf{N} \cdot \mathbf{L} R_{i}
$$

$$
{ }_{i m a g e} \text { intensity of } \mathbf{P} \longrightarrow I=k_{d} \mathbf{N} \cdot \mathbf{L}
$$

Simplifying assumptions

- $I=R_{e}$: camera response function is the identity function:
- $R_{i}=1$: light source intensity is 1
- can achieve this by dividing each pixel in the image by R_{i}

Shape from shading

Suppose $k_{d}=1$

$$
\begin{aligned}
I & =k_{d} \mathbf{N} \cdot \mathbf{L} \\
& =\mathbf{N} \cdot \mathbf{L} \\
& =\cos \theta_{i}
\end{aligned}
$$

You can directly measure angle between normal and light source

- Not quite enough information to compute surface shape
- But can be if you add some additional info, for example
- assume a few of the normals are known (e.g., along silhouette)
- constraints on neighboring normals-"integrability"
- smoothness
- Hard to get it to work well in practice
- plus, how many real objects have constant albedo?

Photometric stereo

Can write this as a matrix equation:

$$
\left[\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=k_{d}\left[\begin{array}{l}
\mathbf{L}_{1}^{T} \\
\mathbf{L}_{2}^{T} \\
\mathbf{L}_{3}^{T}
\end{array}\right] \mathbf{N}
$$

Solving the equations

$$
\begin{aligned}
{\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right] } & =\underbrace{\left[\begin{array}{l}
\mathbf{L}_{1}{ }^{T} \\
\mathbf{L}_{2}{ }^{T} \\
\mathbf{L}_{3}^{T}
\end{array}\right]}_{\mathbf{I}_{\times 1}} \underbrace{k_{d} \mathbf{N}}_{3_{3 \times 3}} \\
\mathbf{G} & =\mathbf{L}^{-1} \mathbf{I} \\
k_{d} & =\|\mathbf{G}\| \\
\mathbf{N} & =\frac{1}{k_{d}} \mathbf{G}
\end{aligned}
$$

More than three lights

Get better results by using more lights

$$
\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{L}_{1} \\
\vdots \\
\mathbf{L}_{\mathbf{n}}
\end{array}\right] k_{d} \mathbf{N}
$$

Least squares solution:

$$
\begin{aligned}
\mathbf{I} & =\mathbf{L G} \\
\mathbf{L}^{\mathbf{T}} \mathbf{I} & =\mathbf{L}^{\mathrm{T}} \mathbf{L G} \\
\mathbf{G} & =\left(\mathbf{L}^{\mathrm{T}} \mathbf{L}\right)^{-1}\left(\mathbf{L}^{\mathrm{T}} \mathbf{I}\right)
\end{aligned}
$$

Solve for $\mathrm{N}, \mathrm{k}_{\mathrm{d}}$ as before
What's the size of $L^{\top} L$?

Computing light source directions

Trick: place a chrome sphere in the scene

- the location of the highlight tells you where the light source is

Depth from normals

Get a similar equation for $\mathbf{V}_{\mathbf{2}}$

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation

Example

What if we don't have mirror ball?

Hayakawa, Journal of the Optical Society of America, 1994, Photometric stereo under a light source with arbitrary motion.

Limitations

Big problems

- doesn't work for shiny things, semi-translucent things
- shadows, inter-reflections

Smaller problems

- camera and lights have to be distant
- calibration requirements
- measure light source directions, intensities
- camera response function

Newer work addresses some of these issues
Some pointers for further reading:

- Zickler, Belhumeur, and Kriegman, "Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction." IJCV, Vol. 49 No. 2/3, pp 215-227.
- Hertzmann \& Seitz, "Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs." IEEE Trans. PAMI 2005

Application: Detecting composite photos

Which is the real photo?

Fake photo

