CS4670: Computer Vision
 Noah Snavely

Lecture 30: Light, color, and reflectance

Light

by Ted Adelson

Readings

- Szeliski, 2.2, 2.3.2

Light

by Ted Adelson

Readings

- Szeliski, 2.2, 2.3.2

Properties of light

Today

- What is light?
- How do we measure it?
- How does light propagate?
- How does light interact with matter?

Radiometry

What determines the brightness of a pixel?

Radiometry

What determines the brightness of a pixel?

Radiometry

What determines the brightness of an image pixel?

Sensor characteristics

What is light?

Electromagnetic radiation (EMR) moving along rays in space

- $R(\lambda)$ is EMR, measured in units of power (watts)
$-\lambda$ is wavelength

Light field

- We can describe all of the light in the scene by specifying the radiation (or "radiance" along all light rays) arriving at every point in space and from every direction

$$
R(X, Y, Z, \theta, \phi, \lambda, t)
$$

Radiometry

Radiomerry is the science of light energy measurement

Radiance
The energy carried by a ray energy/(area solicangle)

Irradiance
The energy per unit area falling on a surface
Radiosity
The energy per unit area leaving a surface

Color perception

Electromagnetic radiation (EMR) moving along rays in space

- $R(\lambda)$ is EMR, measured in units of power (watts)
$-\lambda$ is wavelength

Perceiving light

- How do we convert radiation into "color"?
- What part of the spectrum do we see?

Visible light

We "see" electromagnetic radiation in a range of wavelengths

Light spectrum

The appearance of light depends on its power spectrum

- How much power (or energy) at each wavelength

Our visual system converts a light spectrum into "color"

- This is a rather complex transformation

The human visual system

Color perception

- Light hits the retina, which contains photosensitive cells
- rods and cones
- These cells convert the spectrum into a few discrete values

Density of rods and cones

Rods and cones are non-uniformly distributed on the retina

- Rods responsible for intensity, cones responsible for color
- Fovea - Small region (1 or 2°) at the center of the visual field containing the highest density of cones (and no rods).
- Less visual acuity in the periphery-many rods wired to the same neuron

Demonstrations of visual acuity

With one eye shut, at the right distance, all of these letters should appear equally legible (Glassner, 1.7).

Demonstrations of visual acuity

With left eye shut, look at the cross on the left. At the right distance, the circle on the right should disappear (Glassner, 1.8).

Brightness contrast and constancy

The apparent brightness depends on the surrounding region

- brightness contrast: a constant colored region seems lighter or darker depending on the surrounding intensity:

- http://www.sandlotscience.com/Contrast/Checker Board 2.htm
- brightness constancy: a surface looks the same under widely varying lighting conditions.

Light response is nonlinear

Our visual system has a large dynamic range

- We can resolve both light and dark things at the same time
- One mechanism for achieving this is that we sense light intensity on a logarithmic scale
- an exponential intensity ramp will be seen as a linear ramp
- Another mechanism is adaptation
- rods and cones adapt to be more sensitive in low light, less sensitive in bright light.

Visual dynamic range

Background	Luminance (candelas per square meter)
Horizon sky	
Moonless overcast night	0.00003
Moonless clear night	0.0003
Moonlit overcast night	0.003
Moonlit clear night	0.03
Deep twilight	0.3
Twilight	3
Very dark day	30
Overcast day	300
Clear day	3,000
Day with sunlit clouds	30,000
Daylight fog	$300-1,000$
Dull	$1,000-3,000$
Typical	$3,000-16,000$
Bright	
Ground	$30-100$
Overcast day	300
Sunny day	16,000
Snow in full sunlight	

Color perception

Three types of cones

- Each is sensitive in a different region of the spectrum
- but regions overlap
- Short (S) corresponds to blue
- Medium (M) corresponds to green
- Long (L) corresponds to red
- Different sensitivities: we are more sensitive to green than red
- varies from person to person (and with age)
- Colorblindness—deficiency in at least one type of cone

Color perception

Wavelength
Rods and cones act as filters on the spectrum

- To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
- Each cone yields one number
- Q: How can we represent an entire spectrum with 3 numbers?
- A: We can't! Most of the information is lost.
- As a result, two different spectra may appear indistinguishable
" such spectra are known as metamers
" http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/explo ratories/applets/spectrum/metamers guide.html

Perception summary

The mapping from radiance to perceived color is quite complex!

- We throw away most of the data
- We apply a logarithm
- Brightness affected by pupil size
- Brightness contrast and constancy effects

The same is true for cameras

- But we have tools to correct for these effects
- Coming soon: Computational Photography lecture

Light transport

Light sources

Basic types

- point source
- directional source
- a point source that is infinitely far away
- area source
- a union of point sources

More generally

- a light field can describe *any* distribution of light sources

What happens when light hits an object?
from Steve Marschner

Materials

conductor plus microgeometry

Specular reflection/ transmission

conductor

insulator

from Steve Marschner

Non-smooth-surfaced materials

from Steve Marschner

Classic reflection behavior

ideal specular (Fresnel)

rough specular

Lambertian

What happens when a light ray hits an object?

Some of the light gets absorbed

- converted to other forms of energy (e.g., heat)

Some gets transmitted through the object

- possibly bent, through "refraction"
- a transmitted ray could possible bounce back

Some gets reflected

- as we saw before, it could be reflected in multiple directions (possibly all directions) at once

Let's consider the case of reflection in detail

