CS4670: Computer Vision Noah Snavely

Lecture 28: Bag-of-words models

Bag of Words Models

Adapted from slides by Rob Fergus and Svetlana Lazebnik

Origin 1: Texture Recognition

Example textures (from Wikipedia)

Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Origin 1: Texture recognition

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

2007-01-23: State of the Union Address George W. Bush (2001-)				
abandon choices c deficit c	1962-	10-22: Soviet Missiles in Cuba John F. Kennedy (1961-63)		
expand	abando build u	1941-12-08: Request for a Declaration of War Franklin D. Roosevelt (1933-45)		
insurgen palestini	declineo elimina	abandoning acknowledge aggression aggressors airplanes armaments armed army assault assembly authorizations bombing britain british cheerfully claiming constitution curtail december defeats defending delays democratic dictators disclose		
septemt violenc	halt ha modern	economic empire endanger facts false forgotten fortunes france freedom fulfilled fullness fundamental gangsters german germany god guam harbor hawaii hemisphere hint hitler hostilities immune improving indies innumerable		
	recessio surveill	invasion islands isolate Japanese labor metals midst midway navy nazis obligation offensive officially pacific partisanship patriotism pearl peril perpetrated perpetual philippine preservation privilege reject		
		treachery true tyranny undertaken victory War wartime washington		

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Bags of features for object recognition

face, flowers, building

Works pretty well for image-level classification and for recognizing object *instances*

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)

Bags of features for object recognition

Caltech6 dataset

class	bag of features	bag of features	Parts-and-shape model
Class	Zhang et al. (2005)	Willamowski et al. (2004)	Fergus et al. (2003)
airplanes	98.8	97.1	90.2
cars (rear)	98.3	98.6	90.3
cars (side)	95.0	87.3	88.5
faces	100	99.3	96.4
motorbikes	98.5	98.0	92.5
spotted cats	97.0		90.0

- First, take a bunch of images, extract features, and build up a "dictionary" or "visual vocabulary" – a list of common features
- Given a new image, extract features and build a histogram – for each feature, find the closest visual word in the dictionary

1. Extract features

- 1. Extract features
- 2. Learn "visual vocabulary"

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

Regular grid

- Vogel & Schiele, 2003
- Fei-Fei & Perona, 2005

Regular grid

- Vogel & Schiele, 2003
- Fei-Fei & Perona, 2005

Interest point detector

- Csurka et al. 2004
- Fei-Fei & Perona, 2005
- Sivic et al. 2005

Regular grid

- Vogel & Schiele, 2003
- Fei-Fei & Perona, 2005

Interest point detector

- Csurka et al. 2004
- Fei-Fei & Perona, 2005
- Sivic et al. 2005

Other methods

- Random sampling (Vidal-Naquet & Ullman, 2002)
- Segmentation-based patches (Barnard et al. 2003)

Compute SIFT descriptor [Lowe'99]

Normalize patch

Detect patches

[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

Slide credit: Josef Sivic

2. Learning the visual vocabulary

2. Learning the visual vocabulary

Slide credit: Josef Sivic

2. Learning the visual vocabulary

Slide credit: Josef Sivic

K-means clustering

 Want to minimize sum of squared Euclidean distances between points x_i and their nearest cluster centers m_k

$$D(X,M) = \sum (x_i - m_k)^2$$

cluster k pointi in cluster k

Algorithm:

- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each data point to the nearest center
 - Recompute each cluster center as the mean of all points assigned to it

From clustering to vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Unsupervised learning process
 - Each cluster center produced by k-means becomes a codevector
 - Codebook can be learned on separate training set
 - Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
 - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word

Example visual vocabulary

Fei-Fei et al. 2005

Image patch examples of visual words

Sivic et al. 2005

Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting
- Generative or discriminative learning?
- Computational efficiency
 - Vocabulary trees (Nister & Stewenius, 2006)

3. Image representation

codewords

Image classification

 Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?

Uses of BoW representation

Treat as feature vector for standard classifier
– e.g k-nearest neighbors, support vector machine

Cluster BoW vectors over image collection
– Discover visual themes

Large-scale image matching

Turn 1,000,000 images of Rome...

...into 3D models

Colosseum

St. Peter's Basilica

Trevi Fountain

Large-scale image matching

- How can we match 1,000,000 images to each other?
- Brute force approach: 500,000,000,000 pairs – won't scale
- Better approach: use bag-of-words technique to find *likely* matches
- For each image, find the top M scoring other images, do detailed SIFT matching with those

Example bag-of-words matches

Example bag-of-words matches

Example bag-of-words matches

