CS4670: Intro to Computer Vision Noah Snavely

Lecture 27: Eigenfaces

Linear subspaces

G

convert **x** into v_1 , v_2 coordinates

$$\mathbf{x} \rightarrow ((\mathbf{x} - \overline{x}) \cdot \mathbf{v}_1, (\mathbf{x} - \overline{x}) \cdot \mathbf{v}_2)$$

What does the v_2 coordinate measure?

- distance to line
- use it for classification-near 0 for orange pts

What does the v_1 coordinate measure?

- position along line
- use it to specify which orange point it is

Classification can be expensive

- Must either search (e.g., nearest neighbors) or store large PDF's
- Suppose the data points are arranged as above
 - Idea—fit a line, classifier measures distance to line

Dimensionality reduction

Dimensionality reduction

- We can represent the orange points with *only* their \mathbf{v}_1 coordinates
 - since v_2 coordinates are all essentially 0
- This makes it much cheaper to store and compare points
- A bigger deal for higher dimensional problems

Linear subspaces

GConsider the variation along direction v among all of the orange points: $var(\mathbf{v}) = \sum \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}\|^2$ orange point \mathbf{x} What unit vector **v** minimizes var? $\mathbf{v}_2 = min_{\mathbf{v}} \{var(\mathbf{v})\}$ What unit vector v maximizes var? $\mathbf{v}_1 = max_{\mathbf{v}} \{var(\mathbf{v})\}$ R $var(\mathbf{v}) = \sum_{\mathbf{v}} \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}\|^{2}$ $= \sum_{\mathbf{x}} \mathbf{v}^{\mathrm{T}}(\mathbf{x} - \overline{\mathbf{x}})(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}}\mathbf{v}$ $= \mathbf{v}^{\mathrm{T}} \left| \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \right| \mathbf{v}$ = $\mathbf{v}^T \mathbf{A} \mathbf{v}$ where $\mathbf{A} = \sum_{\overline{x}} (x - \overline{x})(x - \overline{x})^T$ Solution: \mathbf{v}_1 is eigenvector of **A** with *largest* eigenvalue

 v_2 is eigenvector of **A** with *smallest* eigenvalue

Principal component analysis

Suppose each data point is N-dimensional

• Same procedure applies:

$$var(\mathbf{v}) = \sum_{\mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}\|$$

= $\mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v}$ where $\mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}}$

- The eigenvectors of **A** define a new coordinate system
 - eigenvector with largest eigenvalue captures the most variation among training vectors ${\boldsymbol x}$
 - eigenvector with smallest eigenvalue has least variation
- We can compress the data by only using the top few eigenvectors
 - corresponds to choosing a "linear subspace"
 - » represent points on a line, plane, or "hyper-plane"
 - these eigenvectors are known as the *principal components*

The space of faces

An image is a point in a high dimensional space

- An N x M intensity image is a point in R^{NM}
- We can define vectors in this space as we did in the 2D case

Dimensionality reduction

The set of faces is a "subspace" of the set of images

- Suppose it is K dimensional
- We can find the best subspace using PCA
- This is like fitting a "hyper-plane" to the set of faces
 - spanned by vectors v₁, v₂, ..., v_K
 - any face $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_k \mathbf{v}_k$

Eigenfaces

PCA extracts the eigenvectors of A

- Gives a set of vectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$, ...
- Each one of these vectors is a direction in face space
 - what do these look like?

Projecting onto the eigenfaces

The eigenfaces $v_1, ..., v_K$ span the space of faces

• A face is converted to eigenface coordinates by

$$\mathbf{x} \to (\underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_1}_{a_1}, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_2}_{a_2}, \dots, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_K}_{a_K})$$

 $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_K \mathbf{v}_K$

Х

 $a_1 \mathbf{v_1}$ $a_2 \mathbf{v_2}$ $a_3 \mathbf{v_3}$ $a_4 \mathbf{v_4}$ $a_5 \mathbf{v_5}$ $a_6 \mathbf{v_6}$ $a_7 \mathbf{v_7}$ $a_8 \mathbf{v_8}$

Detection and recognition with eigenfaces

Algorithm

- 1. Process the image database (set of images with labels)
 - Run PCA—compute eigenfaces
 - Calculate the K coefficients for each image
- 2. Given a new image (to be recognized) x, calculate K coefficients

$$\mathbf{x} \rightarrow (a_1, a_2, \dots, a_K)$$

3. Detect if x is a face

$$\|\mathbf{x} - (\mathbf{\overline{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \mathsf{threshold}$$

- 4. If it is a face, who is it?
 - Find closest labeled face in database
 - nearest-neighbor in K-dimensional space

Choosing the dimension K

How many eigenfaces to use?

Look at the decay of the eigenvalues

- the eigenvalue tells you the amount of variance "in the direction" of that eigenface
- ignore eigenfaces with low variance

Issues: metrics

What's the best way to compare images?

- need to define appropriate features
- depends on goal of recognition task

exact matching complex features work well (SIFT, MOPS, etc.) classification/detection simple features work well (Viola/Jones, etc.)

Metrics

Lots more feature types that we haven't mentioned

- moments, statistics
 - metrics: Earth mover's distance, ...
- edges, curves
 - metrics: Hausdorff, shape context, ...
- 3D: surfaces, spin images
 - metrics: chamfer (ICP)
- ...

Issues: feature selection

If all you have is one image: non-maximum suppression, etc.

If you have a training set of images: AdaBoost, etc.

Issues: data modeling

Generative methods

- model the "shape" of each class
 - histograms, PCA, mixtures of Gaussians
 - graphical models (HMM's, belief networks, etc.)

- ...

Discriminative methods

- model boundaries between classes
 - perceptrons, neural networks
 - support vector machines (SVM's)

Generative vs. Discriminative

from Chris Bishop

Issues: dimensionality

What if your space isn't *flat*?

• PCA may not help

Nonlinear methods LLE, MDS, etc.

Moving forward

- Faces are pretty well-behaved
 - Mostly the same basic shape
 - Lie close to a low-dimensional subspace
- Not all objects are as nice

Different appearance, similar parts

