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Lecture 27: Eigenfaces




Linear subspaces
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Classification can be expensive

» Must either search (e.g., nearest neighbors) or store large PDF’s
Suppose the data points are arranged as above

« ldea—fit a line, classifier measures distance to line



Dimensionality reduction
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Dimensionality reduction

* We can represent the orange points with only their v, coordinates
— since v, coordinates are all essentially O
» This makes it much cheaper to store and compare points

» A bigger deal for higher dimensional problems



Linear subspaces

A

G Consider the variation along direction v
] ; .
e o o ® among all of the orange points:
T is the mean o ©®
of the orange ® W 5 o ° ° var(v) = E |[(x — X)T : V||2
) o _
points o © ‘M) ° orange point X
e 1 °
] o O_ . ...
o o & ¢ o o What unit vector v minimizes var?
(@)
(@) ] ] P :
Jo e . vo = miny {var(v)}
e o . _
o ©® o o What unit vector v maximizes var?
° o v1 = maxy {var(v)}

var(v) = ZH(X—E)T'VHZ
= Y vix-0x-%)v
= vI Y x-0Ex-%T|v
= vIAv where A=Y (x-%)(x—x)T

Solution: v, is eigenvector of A with largest eigenvalue
V, is eigenvector of A with smallest eigenvalue



Principal component analysis

Suppose each data point is N-dimensional
« Same procedure applies:

var(v) = ) ||(x— )T vl
= vTAv where A=Y (x—-%)(x—%)T

« The eigenvectors of A define a new coordinate system

— eigenvector with largest eigenvalue captures the most variation among
training vectors X

— eigenvector with smallest eigenvalue has least variation

« We can compress the data by only using the top few eigenvectors

— corresponds to choosing a “linear subspace”
» represent points on a line, plane, or “hyper-plane”

— these eigenvectors are known as the principal components



The space of faces

An image is a point in a high dimensional space
« An N x M intensity image is a point in R\M
» We can define vectors in this space as we did in the 2D case



Dimensionality reduction
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The set of faces is a “subspace” of the set of images
« Suppose it is K dimensional
* We can find the best subspace using PCA

« This is like fitting a “hyper-plane” to the set of faces
— spanned by vectors vy, V,, ..., Vg

—anyface x & X+ a1vy +aosvy + ...+ apvy



Eigenfaces

PCA extracts the eigenvectors of A
» Gives a set of vectors vy, V,, Vg, ...

« Each one of these vectors is a direction in face space
— what do these look like?




Projecting onto the eigenfaces

The eigenfaces v, ..., Vi span the space of faces
« A face is converted to eigenface coordinates by

x> ((x—X) vy, (x—X) -vg,..., (X—X)- vk
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Detection and recognition with eigenfaces

Algorithm

1. Process the image database (set of images with labels)
Run PCA—compute eigenfaces
Calculate the K coefficients for each image

2. Given a new image (to be recognized) x, calculate K coefficients

x — (a1,a2,...,0K)

3. Detectif xis a face

||X — (f +ai1vy +aove + ...+ aKVK)H < threshold

4. Ifitis a face, who is it?

 Find closest labeled face in database
nearest-neighbor in K-dimensional space



Choosing the dimension K

eigenvalues \;

i= K NM

How many eigenfaces to use?

Look at the decay of the eigenvalues

 the eigenvalue tells you the amount of variance “in the
direction” of that eigenface

* ignore eigenfaces with low variance



Issues: metrics

What's the best way to compare images?
* need to define appropriate features
» depends on goal of recognition task
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IF
ol
exact matching classification/detection
complex features work well simple features work well

(SIFT, MOPS, etc.) (Viola/Jones, etc.)



Metrics

Lots more feature types that we haven’t mentioned
moments, statistics
— metrics: Earth mover’s distance, ...
edges, curves
— metrics: Hausdorff, shape context, ...
3D: surfaces, spin images
— metrics: chamfer (ICP)



1oN

feature selecti

Issues

If you have a training set of images:
AdaBoost, etc
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Issues: data modeling

Generative methods

« model the “shape” of each class
— histograms, PCA, mixtures of Gaussians
— graphical models (HMM'’s, belief networks, etc.)

Discriminative methods

« model boundaries between classes
— perceptrons, neural networks
— support vector machines (SVM'’s)



Generative vs. Discriminative
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Issues: dimensionality

What if your space isn't flat?
« PCA may not help

Nonlinear methods
LLE, MDS, etc.



Moving forward

* Faces are pretty well-behaved
— Mostly the same basic shape
— Lie close to a low-dimensional subspace

* Not all objects are as nice



Different appearance, similar parts




