CS6670: Computer Vision Noah Snavely

Lecture 23: Structure from motion

CS6670: Computer Vision Noah Snavely

Lecture 24: Multi-view stereo

Readings

• Szeliski, Chapter 11.6

Final project proposals

• Great job on the proposals!

 You can go ahead and get started – I will contact a few groups with additional feedback today

Computer Vision

Libration

Why SFM might fail...

Necker reversal

SfM – Failure cases

• Necker reversal

Structure from Motion – Failure cases

• Repetitive structures

Multi-view stereo

Stereo

Multi-view stereo

Multi-view Stereo

Point Grey's Bumblebee XB3

Point Grey's ProFusion 25

CMU's 3D Room

Multi-view Stereo

Multi-view Stereo

Input: calibrated images from several viewpoints Output: 3D object model

Figures by Carlos Hernandez

What's the optimal baseline?

- Too small: large depth error
- Too large: difficult search problem

The Effect of Baseline on Depth Estimation

Figure 2: An example scene. The grid pattern in the background has ambiguity of matching.

pixel matching score

Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b; (c) B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b. The horizontal axis is normalized such that 8bF = 1.

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.

Multibaseline Stereo

Basic Approach

- Choose a reference view
- Use your favorite stereo algorithm BUT
 - replace two-view SSD with SSSD over all baselines

Limitations

Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b; (c) B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b. The horizontal axis is normalized such that 8bF = 1.

Problem: visibility

Fig. 7. Combining multiple baseline stereo pairs.

Some Solutions

- Match only nearby photos [Narayanan 98]
- Use NCC instead of SSD, Ignore NCC values > threshold [Hernandez & Schmitt 03]

Popular matching scores

• SSD (Sum Squared Distance)

$$\sum_{x,y} |W_1(x,y) - W_2(x,y)|^2$$

• NCC (Normalized Cross Correlation) $\frac{\sum_{x,y} (W_1(x,y) - \overline{W_1})(W_2(x,y) - \overline{W_2})}{\sigma_{W_1}\sigma_{W_2}}$ $- \text{ where } \overline{W_i} = \frac{1}{n} \sum_{x,y} W_i \qquad \sigma_{W_i} = \sqrt{\frac{1}{n} \sum_{x,y} (W_i - \overline{W_i})^2}$

– what advantages might NCC have?

Questions?

Multi-view stereo from Internet Collections

[Goesele, Snavely, Curless, Hoppe, Seitz, ICCV 2007]

Challenges

appearance variation

resolution

massive collections

82,754 results for photos matching notre and dame and paris

4 best neighboring views

reference view

• Automatically select neighboring views for each point in the image

• Desiderata: good matches AND good baselines

4 best neighboring views

reference view

• Automatically select neighboring views for each point in the image

• Desiderata: good matches AND good baselines

4 best neighboring views

reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

Results

Notre Dame de Paris

653 images 313 photographers

merged model of Venus de Milo

merged model of Pisa Cathedral

Accuracy compared to laser scanned model: 90% of points within 0.25% of ground truth

