CS6670: Computer Vision Noah Snavely

Lecture 22: Structure from motion

Readings

- Szeliski, Chapter 7.1 - 7.4

Announcements

- Project 2b due on Tuesday by 10:59pm
- Final project proposals due today at 11:59pm
- Course survey

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:
http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumb er=7531\&prod=JNL\&arnumber=310740\&arSt=83\&ared=87\&a $\underline{\text { rAuthor=Blinn\%2C+J.F. }}$

Encoding blend weights: $\mathrm{I}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{R}, \alpha \mathrm{G}, \alpha \mathrm{B}, \alpha)$
color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$
Implement this in two steps:

1. accumulate: add up the (α premultiplied) $R G B \alpha$ values at each pixel
2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha=0$?

Blend weights

How should we set the alpha values of I_{1}, I_{2}, I_{3} ?
Simplest choice: set all alpha values to one (gives discontinuities)
Better choice: use feathering to ramp alpha values to zero near the edges

What about more than two views?

- The geometry of three views is described by a $3 \times 3 \times 3$ tensor called the trifocal tensor
- The geometry of four views is described by a $3 \times 3 \times 3 \times 3$ tensor called the quadrifocal tensor
- After this it starts to get complicated...

New approach

- These matrices, tensors, etc, model geometry as a matrix that depends (in complicated ways) on the camera parameters alone
- Instead, we will explicitly model both cameras and points

Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours
Number of cores: 352

Questions?

Structure from motion

- Given many images, how can we
a) figure out where they were all taken from?
b) build a 3D model of the scene?

This is (roughly) the structure from motion problem

Structure from motion

Reconstruction (side)

- Input: images with points in correspondence

$$
p_{i, j}=\left(u_{i, j} v_{i, j}\right)
$$

- Output
- structure: 3D location \mathbf{x}_{i} for each point p_{i}
- motion: camera parameters $\mathbf{R}_{j}, \mathbf{t}_{j}$ possibly \mathbf{K}_{j}
- Objective function: minimize reprojection error

Camera calibration and triangulation

- Suppose we know 3D points
- And have matches between these points and an image
- How can we compute the camera parameters?
- Suppose we have know camera parameters, each of which observes a point
- How can we compute the 3D location of that point?

Structure from motion

- SfM solves both of these problems at once
- A kind of chicken-and-egg problem
- (but solvable)

Photo Tourism

First step: how to get correspondence?

- Feature detection and matching

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair

Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

Structure from motion

Problem size

- What are the variables?
- How many variables per camera?
- How many variables per point?
- Trevi Fountain collection

466 input photos
+> 100,000 3D points
= very large optimization problem

Incremental structure from motion

Incremental structure from motion

Incremental structure from motion

Photo Explorer

Demo

Eile Edit View History Bookmarks Iools Help
(<) C $<$ W http://en.wikipedia.org/wik/Libration

WikipediA The Free Encyclopedia

navigation

- Main page
- Contents
- Featured content
- Current events
- Random article

search

Go Search
interaction

- About Wikipedia
- Community portal
- Recent changes
- Contact Wikipedia
- Donate to Wikipedia
- Help

toolbox

- What links here
- Related changes
- Upload file
- Special pages
- Printable version
- Permanent link

Simulated views of the Moon over one month, demonstrating \quad librations in latitude and longitude.

- Libration in latitude is a consequence of the Moon's axis of rotation being slightly inclined to the normal to the plane of its orbit around Earth. Its origin is analogous to the way in which the seasons arise from Earth's revolution about the Sun.
- Diurnal libration is a small daily oscillation due to the Earth's rotation, which carries an observer first to one side and then to the other side of the straight line joining Earth's center to the Moon's center, allowing the observer to look first around one side of the Moon and then around the other. This is because the observer is on the surface of the Earth, not at its centre.

Questions?

