CS6670: Computer Vision Noah Snavely

Lecture 21: Multiple-view geometry and structure from motion

Readings

- Szeliski, Chapter 7.1 - 7.4

Announcements

- Project 2b due next Tuesday, Nov 2, by 10:59pm
- Final project proposals due by this Friday, Oct 29, by 11:59pm
- See project webpage for project ideas

Two-view geometry

- Where do epipolar lines come from?

Fundamental matrix

- This epipolar geometry of two views is described by a Very Special 3×3 matrix \mathbf{F}, called the fundamental matrix
- \mathbf{F} maps (homogeneous) points in image 1 to lines in image 2!
- The epipolar line (in image 2) of point \mathbf{p} is: $\mathbf{F p}$
- Epipolar constraint on corresponding points: $\mathbf{q}^{T} \mathbf{F} \mathbf{p}=0$

Fundamental matrix

- Two special points: \mathbf{e}_{1} and \mathbf{e}_{2} (the epipoles): projection of one camera into the other

Relationship with homography?

Images taken from the same center of projection? Use a homography, and map points directly to points!

Images taken from different places? We need an F-matrix.

Fundamental matrix - uncalibrated case

\mathbf{K}_{1} : intrinsics of camera $1 \quad \mathbf{K}_{2}$: intrinsics of camera 2
\mathbf{R} : rotation of image 2 w.r.t. camera 1

$$
\mathbf{q}^{T} \underbrace{\mathbf{K}}_{\mathbf{K}}{ }^{\mathbf{K}} \mathbf{R}[\mathbf{t}]_{\times} \mathbf{K}_{1}^{-1} \mathbf{p}=0
$$

Cross-product as linear operator

Useful fact: Cross product with a vector \mathbf{t} can be represented as multiplication with a (skew-symmetric) 3×3 matrix

$$
\begin{gathered}
{[\mathbf{t}]_{\times}=\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t_{y} & t_{x} & 0
\end{array}\right]} \\
\mathbf{t} \times \tilde{\mathbf{p}}=[\mathbf{t}]_{\times} \tilde{\mathbf{p}}
\end{gathered}
$$

Fundamental matrix - calibrated case

Properties of the Fundamental Matrix

- Fp is the epipolar line associated with \mathbf{p}
- $\mathbf{F}^{T} \mathbf{q}$ is the epipolar line associated with \mathbf{q}
- $\mathbf{F e}_{1}=\mathbf{0}$ and $\mathbf{F}^{T} \mathbf{e}_{2}=\mathbf{0}$
- \mathbf{F} is rank 2
- How many parameters does \mathbf{F} have?

Rectified case

$\mathbf{R}=\mathbf{I}_{3 \times 3}$
$\mathbf{t}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$
$\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$

Stereo image rectification

- reproject image planes onto a common
- plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- two homographies (3x3 transform), one for each input image reprojection
> C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Questions?

Estimating F

- If we don't know $\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{R}$, or \mathbf{t}, can we estimate \mathbf{F} for two images?
- Yes, given enough correspondences

Estimating F - 8-point algorithm

- The fundamental matrix F is defined by

$$
\mathbf{x}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x}=0
$$

for any pair of matches x and x^{\prime} in two images.

- Let $x=(u, v, 1)^{\top}$ and $x^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)^{\top}$,

$$
\mathbf{F}=\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]
$$

each match gives a linear equation
$u u^{\prime} f_{11}+v u^{\prime} f_{12}+u^{\prime} f_{13}+u v^{\prime} f_{21}+v v^{\prime} f_{22}+v^{\prime} f_{23}+u f_{31}+v f_{32}+f_{33}=0$

8-point algorithm

- In reality, instead of solving $\mathbf{A f}=0$, we seek \mathbf{f} to minimize $\|\mathbf{A f}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}} \mathbf{A}$.

8-point algorithm - Problem?

- F should have rank 2 - not a linear constraint
- To enforce that \mathbf{F} is of rank 2, \mathbf{F} is replaced by \mathbf{F}^{\prime} that minimizes $\left\|\mathbf{F}-\mathbf{F}^{\prime}\right\|$ subject to the rank constraint.
- This is achieved by SVD. Let $\mathbf{F}=\mathbf{U} \Sigma \mathbf{V}{ }^{\mathrm{T}}$ where

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right] \text {, let } \quad \Sigma^{\prime}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

then $\mathbf{F}^{\prime}=\mathbf{U} \Sigma^{\prime} \mathbf{V}^{\mathrm{T}}$ is the solution.

8-point algorithm

\% Build the constraint matrix
A $=\left[x 2(1,:)^{\cdot} \cdot{ }^{*} \times 1(1,:)^{\prime} \quad x 2(1,:)^{\prime} .{ }^{*} x 1(2,:)^{\prime} \times 2(1,:)^{\prime} \ldots\right.$ x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:) $)^{\prime} \times 2(2,:)^{\prime} \ldots$ $x 1(1,:)^{\prime} \quad x 1(2,:)^{\prime} \quad$ ones(npts,1)];
[U,D,V] = svd(A);
\% Extract fundamental matrix from the column of V
\% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)';
\% Enforce rank2 constraint
[U,D,V] = svd(F);
$F=U^{*} \operatorname{diag}([D(1,1) D(2,2) 0])^{*} V^{\prime} ;$

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise
- In practice, we use the normalized 8-point algorithm
- (See R. Hartley, "In Defense of the Eight-Point Algorithm", PAMI '97).

Results (ground truth)

Results (8-point algorithm)

Results (normalized 8-point algorithm)

■ Normalized 8-point algorithm

Estimating the F-matrix

- If we have more than eight points, we can solve a least-squares version of this problem
- What could go wrong?
- How can we fix this?

Estimating the F-matrix

- Extra bonus:
- If we run RANSAC to find an F-matrix with the most inliers, we can throw out inconsistent matches (i.e., this is a "bad match filter")
- Might be useful later on...

What about more than two views?

- The geometry of three views is described by a $3 \times 3 \times 3$ tensor called the trifocal tensor
- The geometry of four views is described by a $3 \times 3 \times 3 \times 3$ tensor called the quadrifocal tensor
- After this it starts to get complicated...

