## CS6670: Computer Vision Noah Snavely

## Lecture 20: Two-view geometry



## Readings

- Szeliski, Chapter 7.2
- "Fundamental matrix song"


## Announcements

- Project 2b due next Tuesday, Nov 2, by 10:59pm
- Final project proposals due by this Friday, Oct 29, by 11:59pm
- See project webpage for project ideas


## Back to stereo



- Where do epipolar lines come from?


## Two-view geometry

- Where do epipolar lines come from?



## Fundamental matrix



- This epipolar geometry of two views is described by a Very Special $3 \times 3$ matrix $\mathbf{F}$, called the fundamental matrix
- $\mathbf{F}$ maps (homogeneous) points in image 1 to lines in image 2!
- The epipolar line (in image 2 ) of point $\mathbf{p}$ is: $\mathbf{F p}$
- Epipolar constraint on corresponding points: $\mathbf{q}^{T} \mathbf{F} \mathbf{p}=0$


## Fundamental matrix



- Two special points: $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$ (the epipoles): projection of one camera into the other


## Fundamental matrix



- Two special points: $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$ (the epipoles): projection of one camera into the other
- All of the epipolar lines in an image pass through the epipole


## Rectified case



- Images have the same orientation, $\mathbf{t}$ parallel to image planes
- Where are the epipoles?


## Epipolar geometry demo



## Relationship with homography?



Images taken from the same center of projection? Use a homography!

## Fundamental matrix - uncalibrated case


$\mathbf{K}_{1}$ : intrinsics of camera $1 \quad \mathbf{K}_{2}$ : intrinsics of camera 2
$\mathbf{R}$ : rotation of image 2 w.r.t. camera 1

$$
\mathbf{q}^{T} \underbrace{\mathbf{K}}_{\mathbf{K}}{ }^{\mathbf{K}} \mathbf{R}[\mathbf{t}]_{\times} \mathbf{K}_{1}^{-1} \mathbf{p}=0
$$

## Cross-product as linear operator

Useful fact: Cross product with a vector $\mathbf{t}$ can be represented as multiplication with a (skew-symmetric) $3 \times 3$ matrix

$$
\begin{gathered}
{[\mathbf{t}]_{\times}=\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t_{y} & t_{x} & 0
\end{array}\right]} \\
\mathbf{t} \times \tilde{\mathbf{p}}=[\mathbf{t}]_{\times} \tilde{\mathbf{p}}
\end{gathered}
$$

## Fundamental matrix - calibrated case



## Properties of the Fundamental Matrix

- Fp is the epipolar line associated with $\mathbf{p}$
- $\mathbf{F}^{T} \mathbf{q}$ is the epipolar line associated with $\mathbf{q}$
- $\mathbf{F e}_{1}=\mathbf{0}$ and $\mathbf{F}^{T} \mathbf{e}_{2}=\mathbf{0}$
- $\mathbf{F}$ is rank 2
- How many parameters does $\mathbf{F}$ have?


## Rectified case


$\mathbf{R}=\mathbf{I}_{3 \times 3}$
$\mathbf{t}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$
$\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$

## Stereo image rectification

- reproject image planes onto a common
- plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- two homographies (3x3 transform), one for each input image reprojection
> C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.


## Questions?

