CS6670: Computer Vision

Noah Snavely

Lecture 11: Stereo and optical flow

Readings

- Szeliski, Chapter 11.2-11.5

Your basic stereo algorithm

For each epipolar line
For each pixel in the left image

- compare window with every window on same epipolar line in right image
- pick pixel with minimum match cost

Stereo as energy minimization

- Find disparity map d that minimizes an energy function $E(d)$
- Simple pixel / window matching

$$
E(d)=\sum_{(x, y) \in I} C(x, y, d(x, y))
$$

$$
C(x, y, d(x, y))=\stackrel{\text { SSD distance between windows }}{\|(x, y) \text { and } J(x+d(x, y), y)}
$$

Stereo as energy minimization

Stereo as energy minimization

Simple pixel / window matching: choose the minimum of each column in the DSI independently:

$$
d(x, y)=\underset{d^{\prime}}{\arg \min } C\left(x, y, d^{\prime}\right)
$$

Stereo as energy minimization

- Better objective function

$$
\vec{H}(d)=\underbrace{}_{s}=
$$

Stereo as energy minimization

$$
E(d)=E_{d}(d)+\lambda E_{s}(d)
$$

match cost: $\quad E_{d}(d)=\sum C(x, y, d(x, y))$

$$
(x, y) \in I
$$

smoothness cost: $E_{s}(d)=\sum V\left(d_{p}, d_{q}\right)$
\mathcal{E} : set of neighboring pixels

Smoothness cost

$$
E_{s}(d)=\sum_{(p, q) \in \mathcal{E}} V\left(d_{p}, d_{q}\right)
$$

How do we choose V ?

$$
V\left(d_{p}, d_{q}\right)=\left|d_{p}-d_{q}\right|
$$

L_{1} distance

$$
V\left(d_{p}, d_{q}\right)= \begin{cases}0 & \text { if } d_{p}=d_{q} \\ 1 & \text { if } d_{p} \neq d_{q}\end{cases}
$$

"Potts model"

Dynamic programming

$$
E(d)=E_{d}(d)+\lambda E_{s}(d)
$$

- Can minimize this independently per scanline using dynamic programming (DP)
$D(x, y, d)$: minimum cost of solution such that $d(x, y)=d$
$D(x, y, d)=C(x, y, d)+\min _{d^{\prime}}\left\{D\left(x-1, y, d^{\prime}\right)+\lambda\left|d-d^{\prime}\right|\right\}$

Dynamic programming

- Finds "smooth" path through DPI from left to right

Dynamic Programming

Dynamic programming

- Can we apply this trick in 2D as well?

- No: $d_{x, y-1}$ and $d_{x-1, y}$ may depend on different values of $d_{x-1, y-1}$

Stereo as a minimization problem

$$
E(d)=E_{d}(d)+\lambda E_{s}(d)
$$

- The 2D problem has many local minima
- Gradient descent doesn't work well
- And a large search space
- $n \times m$ image w / k disparities has $k^{n m}$ possible solutions
- Finding the global minimum is NP-hard in general
- Good approximations exist... we'll see this soon

Questions?

What if the scene is moving?

- And the camera is fixed (or moving)

Optical flow

- Why would we want to do this?

