CS6670: Computer Vision
Noah Snavely

Lecture 16: Single-view modeling, Part 2
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Comparing heights

Vanishing
Point




Measuring height

How high is the camera?
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Measuring height without a ruler

C Z

/round plane
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Compute Z from image measurements

e Need more than vanishing points to do this



The cross ratio

* A Projective Invariant

— Something that does not change under projective
transformations (including perspective projection)

The cross-ratio of 4 collinear points
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Can permute the point ordering le — PzH HP4 — P3H

e 4| =24 different orders (but only 6 distinct values)
This is the fundamental invariant of projective geometry




Measuring height
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scene cross ratio

49 T (top of object)
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R image cross ratio
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ground plane

scene points represented as P = image pointsas  p=|Yy
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Measuring height




Measuring height .
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vanishing line (horizon)
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What if the point on the ground plane b, is not known?
e Here the guy is standing on the box, height of box is known
— e Use one side of the box to help find b, as shown above ™~
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3D Modeling from a photograph

e U

St. Jerome in his Study, H. Steenwick



3D Modeling from a photograph




3D Modeling from a photograph

Flagellation, Piero della Francesca



3D I\/Iodelmg from a photograph
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video by Antonio Criminisi



3D Modeling from a photograph




Camera calibration
* Goal: estimate the camera parameters

— Version 1: solve for projection matrix
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e Version 2: solve for camera parameters separately

— intrinsics (focal length, principle point, pixel size)

— extrinsics (rotation angles, translation)

— radial distortion



Vanishing points and projection matrix
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. nlzﬂ[l 0 O O]T = v, (X vanishing point)

e similarly, m,=v,, =V,

e m,=M[0 0 0 1] =projection of world origin
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Not So Fast! We only know v’s up to a scale factor

Mm=|av, bv, cv, o]

e Can fully specify by providing 3 reference points



Calibration using a reference object

* Place a known object in the scene
— identify correspondence between image and scene
— compute mapping from scene to image

Issues

e must know geometry very accurately
e must know 3D->2D correspondence



Chromaglyphs
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Courtesy of Bruce Culbertson, HP Labs
http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm



Estimating the projection matrix

* Place a known object in the scene
— identify correspondence between image and scene
— compute mapping from scene to image

mio mii1 miz2 Mmi3
m2p0 MMm21 Mm22 M23

1
=& E
|
112

|:m00 moi1 Mmop2 M3

= NS




Direct linear calibration
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Direct linear calibration
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Can solve for m;; by linear least squares

e use eigenvector trick that we used for homographies
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Direct linear calibration

* Advantage:

— Very simple to formulate and solve

* Disadvantages:

— Doesn’t tell you the camera parameters

— Doesn’t model radial distortion

— Hard to impose constraints (e.g., known f)
— Doesn’t minimize the right error function

For these reasons, nonlinear methods are preferred

e Define error function E between projected 3D points and image positions

— Eis nonlinear function of intrinsics, extrinsics, radial distortion

e Minimize E using nonlinear optimization techniques



