CS6670: Computer Vision Noah Snavely

Lecture 15: Single-view modeling

Announcements

• Partners for project 2b

 Midterm handed out Friday, due Wednesday at the beginning of class

Point and line duality

- A line I is a homogeneous 3-vector
- It is \perp to every point (ray) **p** on the line: **I p**=0

What is the line I spanned by rays **p**₁ and **p**₂?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I can be interpreted as a *plane normal*

What is the intersection of two lines I_1 and I_2 ?

• **p** is \perp to **I**₁ and **I**₂ \Rightarrow **p** = **I**₁ \times **I**₂

Points and lines are *dual* in projective space

- Ideal point ("point at infinity")
 - $p \cong (x, y, 0) parallel to image plane$
 - It has infinite image coordinates

Ideal line

- $I \cong (a, b, 0)$ parallel to image plane
- Corresponds to a line in the image (finite coordinates)
 - goes through image origin (principle point)

3D projective geometry

- These concepts generalize naturally to 3D
 - Homogeneous coordinates
 - Projective 3D points have four coords: **P** = (X,Y,Z,W)
 - Duality
 - A plane **N** is also represented by a 4-vector
 - Points and planes are dual in 3D: **N P**=0
 - Three points define a plane, three planes define a point

3D to 2D: perspective projection

Projection:

Vanishing points (1D)

- Vanishing point
 - projection of a point at infinity
 - can often (but not always) project to a finite point in the image

	center	
image plane		

- Properties
 - Any two parallel lines (in 3D) have the same vanishing point v
 - The ray from **C** through **v** is parallel to the lines
 - An image may have more than one vanishing point
 - in fact, every image point is a potential vanishing point

Two point perspective

Three point perspective

Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the *horizon line*
 - also called vanishing line
 - Note that different planes (can) define different vanishing lines

Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the *horizon line*
 - also called vanishing line
 - Note that different planes (can) define different vanishing lines

- Properties $\mathbf{v} = \mathbf{\Pi} \mathbf{P}_{\infty}$
 - \mathbf{P}_{∞} is a point at *infinity*, **v** is its projection
 - Depends only on line *direction*
 - Parallel lines P_0 + tD, P_1 + tD intersect at P_{∞}

• Properties

- I is intersection of horizontal plane through **C** with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as C project to I
 - points higher than C project above I
- Provides way of comparing height of objects in the scene

Fun with vanishing noints

Perspective cues

Perspective cues

Perspective cues

Comparing heights

Measuring height

