CS6670: Computer Vision
 Noah Snavely

Lecture 15: Single-view modeling

Announcements

- Partners for project $2 b$
- Midterm handed out Friday, due Wednesday at the beginning of class

Point and line duality

- A line I is a homogeneous 3 -vector
- It is \perp to every point (ray) \mathbf{p} on the line: I $\mathbf{p}=0$

What is the line \mathbf{I} spanned by rays \boldsymbol{p}_{1} and \mathbf{p}_{2} ?

- I is \perp to p_{1} and $p_{2} \Rightarrow I=p_{1} \times p_{2}$
- I can be interpreted as a plane normal

What is the intersection of two lines \boldsymbol{I}_{1} and \boldsymbol{I}_{2} ?

- p is \perp to I_{1} and $I_{2} \Rightarrow p=I_{1} \times I_{2}$

Points and lines are dual in projective space

Ideal points and lines

- Ideal point ("point at infinity")
$-p \cong(x, y, 0)$ - parallel to image plane
- It has infinite image coordinates

Ideal line

- I $\cong(a, b, 0)$ - parallel to image plane
- Corresponds to a line in the image (finite coordinates)
- goes through image origin (principle point)

3D projective geometry

- These concepts generalize naturally to 3D
- Homogeneous coordinates
- Projective 3D points have four coords: $\mathbf{P}=(X, Y, Z, W)$
- Duality
- A plane \mathbf{N} is also represented by a 4-vector
- Points and planes are dual in 3D: $\mathbf{N} \mathbf{P}=0$
- Three points define a plane, three planes define a point

3D to 2D: perspective projection

Projection: $\quad \mathbf{p}=\left[\begin{array}{c}w x \\ w y \\ w\end{array}\right]=\left[\begin{array}{llll}* & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]=\boldsymbol{\Pi P}$

Vanishing points (1D)

- Vanishing point
- projection of a point at infinity
- can often (but not always) project to a finite point in the image

camera
center

Vanishing points

- Properties
- Any two parallel lines (in 3D) have the same vanishing point \mathbf{v}
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point
- in fact, every image point is a potential vanishing point

Two point perspective

Three point perspective

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes (can) define different vanishing lines

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes (can) define different vanishing lines

Computing vanishing points

Computing vanishing points

$$
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right]
$$

- Properties $\mathbf{v}=\boldsymbol{\Pi} \mathbf{P}_{\infty}$
- \mathbf{P}_{∞} is a point at infinity, \mathbf{v} is its projection
- Depends only on line direction
- Parallel lines $\mathbf{P}_{0}+t \mathbf{D}, \mathbf{P}_{1}+\mathrm{tD}$ intersect at \mathbf{P}_{∞}

Computing vanishing lines

- Properties
- I is intersection of horizontal plane through \mathbf{C} with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as \mathbf{C} project to \mathbf{I}
- points higher than C project above I
- Provides way of comparing height of objects in the scene

Fis suith vanichino nointc

$$
111
$$

$$
118
$$

Perspective cues

Comparing heights

Measuring height

