CS4670: Computer Vision Noah Snavely

Lecture 14: Panoramas

What's inside your fridge?
http://www.cs.washington.edu/education/courses/cse590ss/01wi/

Reading

- Szeliski Chapter 9

Announcements

- Project 2a due today, 8:59pm
- Project 2b out today
- Take-home prelim after Fall break

Image alignment

Can we use homography to create a 360 panorama?

Last time: projecting images onto a common plane

Can't create a 360 panorama this way...
mosaic PP

Panoramas

- What if you want a 360° field of view?

Spherical projection

- Map 3D point (X, Y, Z) onto sphere

$$
(\widehat{x}, \widehat{y}, \widehat{z})=\frac{1}{\sqrt{X^{2}+Y^{2}+Z^{2}}}(X, Y, Z)
$$

- Convert to spherical coordinates $(\sin \theta \cos \phi, \sin \phi, \cos \theta \cos \phi)=(\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates

$$
(\tilde{x}, \tilde{y})=(s \theta, s \phi)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right)
$$

- s defines size of the final image
" often convenient to set s = camera focal length

Spherical reprojection

input

$\mathrm{f}=\mathbf{2 0 0}$ (pixels)

$\mathrm{f}=\mathbf{4 0 0}$

$\mathrm{f}=\mathbf{8 0 0}$

- Map image to spherical coordinates
- need to know the focal length

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
- How does this change the spherical image?

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
- How does this change the spherical image?
- Translation by θ
- This means that we can align spherical images by translation

Unwrapping a sphere

Spherical panoramas

Microsoft Lobby: http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski

Different projections are possible

Blending

- We've aligned the images - now what?

Blending

- Want to seamlessly blend them together

Image Blending

Feathering

Effect of window size

Effect of window size

Good window size

"Optimal" window: smooth but not ghosted

- Doesn't always work...

Pyramid blending

(d)

(h)

(1)

Create a Laplacian pyramid, blend each level

- Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

The Laplacian Pyramid

$$
L_{i}=G_{i}-\operatorname{expand}\left(G_{i+1}\right)
$$

Gaussian Pyramid $\quad G_{i}=L_{i}+\operatorname{expand}\left(G_{i+1}\right) \quad$ Laplacian Pyramid

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:
http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumb er=7531\&prod=JNL\&arnumber=310740\&arSt=83\&ared=87\&a $\underline{\text { rAuthor=Blinn\%2C+J.F. }}$

Encoding blend weights: $\mathrm{I}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{R}, \alpha \mathrm{G}, \alpha \mathrm{B}, \alpha)$
color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$
Implement this in two steps:

1. accumulate: add up the (α premultiplied) $R G B \alpha$ values at each pixel
2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha=0$?

Poisson Image Editing

- For more info: Perez et al, SIGGRAPH 2003
- http://research.microsoft.com/vision/cambridge/papers/perez siggraph03.pdf

Some panorama examples

Before Siggraph Deadline:
http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/d ougz/siggraph-hires.html

Some panorama examples

- Every image on Google Streetview

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Other types of mosaics

- Can mosaic onto any surface if you know the geometry
- See NASA's Visible Earth project for some stunning earth mosaics
- http://earthobservatory.nasa.gov/Newsroom/BlueMarble/
- Click for images...

Questions?

CS6670: Computer Vision

Noah Snavely

Lecture 14b: Single-view modeling

Projective geometry

Ames Room

- Readings
- Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1-23.5, 23.10)
- available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Projective geometry—what's it good for?

- Uses of projective geometry
- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Camera pose estimation
- Object recognition

Paolo Uccello

Applications of projective geometry

Vermeer's Music Lesson

Measurements on planes

Approach: unwarp then measure

Point and line duality

- A line I is a homogeneous 3 -vector
- It is \perp to every point (ray) \mathbf{p} on the line: I $\mathbf{p}=0$

What is the line \mathbf{I} spanned by rays \boldsymbol{p}_{1} and \mathbf{p}_{2} ?

- I is \perp to p_{1} and $p_{2} \Rightarrow I=p_{1} \times p_{2}$
- I can be interpreted as a plane normal

What is the intersection of two lines \boldsymbol{I}_{1} and \boldsymbol{I}_{2} ?

- p is \perp to I_{1} and $I_{2} \Rightarrow p=I_{1} \times I_{2}$

Points and lines are dual in projective space

