CS4670: Computer Vision

Noah Snavely

Lecture 14: Panoramas

What's inside your fridge?

http://www.cs.washington.edu/education/courses/cse590ss/01wi/

Reading

• Szeliski Chapter 9

Announcements

Project 2a due today, 8:59pm

Project 2b out today

Take-home prelim after Fall break

Image alignment

Can we use homography to create a 360 panorama?

Last time: projecting images onto a common plane

mosaic PP

Panoramas

What if you want a 360° field of view?

Spherical projection

unwrapped sphere

Map 3D point (X,Y,Z) onto sphere

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Y^2 + Z^2}} (X, Y, Z)$$

- Convert to spherical coordinates $(sin\theta cos\phi, sin\phi, cos\theta cos\phi) = (\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates

$$(\tilde{x}, \tilde{y}) = (s\theta, s\phi) + (\tilde{x}_c, \tilde{y}_c)$$

- s defines size of the final image
 - » often convenient to set s = camera focal length

 \tilde{x} Spherical image

Spherical reprojection

- Map image to spherical coordinates
 - need to know the focal length

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
 - How does this change the spherical image?

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
 - How does this change the spherical image?
 - Translation by θ
 - This means that we can align spherical images by translation

Unwrapping a sphere

Credit: JHT's Planetary Pixel Emporium

Spherical panoramas

Microsoft Lobby: http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski

Different projections are possible

Blending

We've aligned the images – now what?

Blending

Want to seamlessly blend them together

Image Blending

Feathering

Effect of window size

Effect of window size

Good window size

"Optimal" window: smooth but not ghosted

• Doesn't always work...

Pyramid blending

Create a Laplacian pyramid, blend each level

• Burt, P. J. and Adelson, E. H., <u>A multiresolution spline with applications to image mosaics</u>, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

The Laplacian Pyramid

Gaussian Pyramid
$$G_i = L_i + \operatorname{expand}(G_{i+1})$$
 Laplacian Pyramid $G_i = L_i + \operatorname{expand}(G_{i+1})$ Laplacian Pyramid $C_i = L_i + \operatorname{expand}(G_{i+1})$ Laplacian Pyramid $C_i = C_i + \operatorname{expand}(G_{i+1})$ $C_i = C_i + \operatorname{expand}(G_{i$

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:

http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&arAuthor=Blinn%2C+J.F.

Encoding blend weights: $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$

color at p =
$$\frac{(\alpha_1 R_1, \ \alpha_1 G_1, \ \alpha_1 B_1) + (\alpha_2 R_2, \ \alpha_2 G_2, \ \alpha_2 B_2) + (\alpha_3 R_3, \ \alpha_3 G_3, \ \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$$

Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB α values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha = 0$?

Poisson Image Editing

- For more info: Perez et al, SIGGRAPH 2003
 - http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Some panorama examples

Before Siggraph Deadline:

http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougz/siggraph-hires.html

Some panorama examples

Every image on Google Streetview

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Other types of mosaics

- Can mosaic onto any surface if you know the geometry
 - See NASA's <u>Visible Earth project</u> for some stunning earth mosaics
 - http://earthobservatory.nasa.gov/Newsroom/BlueMarble/
 - Click for <u>images</u>...

Questions?

CS6670: Computer Vision Noah Snavely

Lecture 14b: Single-view modeling

Projective geometry

Ames Room

Readings

- Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1 - 23.5, 23.10)
 - available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Projective geometry—what's it good for?

- Uses of projective geometry
 - Drawing
 - Measurements
 - Mathematics for projection
 - Undistorting images
 - Camera pose estimation
 - Object recognition

Paolo Uccello

Applications of projective geometry

Vermeer's Music Lesson

Measurements on planes

Point and line duality

- A line I is a homogeneous 3-vector
- It is \perp to every point (ray) **p** on the line: **I p**=0

What is the line I spanned by rays p_1 and p_2 ?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I can be interpreted as a *plane normal*

What is the intersection of two lines l_1 and l_2 ?

• \mathbf{p} is \perp to $\mathbf{I_1}$ and $\mathbf{I_2} \implies \mathbf{p} = \mathbf{I_1} \times \mathbf{I_2}$

Points and lines are dual in projective space