CS4670: Computer Vision Noah Snavely

Lecture 12: Projection

"The School of Athens," Raphael

Reading

- Szeliski 2.1.3-2.1.6

Pinhole camera

- Add a barrier to block off most of the rays
- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Shrinking the aperture

Adding a lens

- A lens focuses light onto the film
- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

The eye

- The human eye is a camera
- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

Projection

Projection

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze muelue/index.html

Modeling projection

- The coordinate system
- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
- Why?
- The camera looks down the negative z axis
- we need this if we want right-handed-coordinates

Modeling projection

- Projection equations

- Compute intersection with PP of ray from (x, y, z) to COP
- Derived using similar triangles (on board)

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- We get the projection by throwing out the last coordinate:

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

Modeling projection

- Is this a linear transformation?
- no-division by z is nonlinear

Homogeneous coordinates to the rescue!

$$
(x, y) \Rightarrow\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \quad(x, y, z) \Rightarrow\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

homogeneous image coordinates
homogeneous scene coordinates

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$
\begin{array}{r}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=} \\
\\
\text { divide by third coordinate }
\end{array}\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

This is known as perspective projection

- The matrix is the projection matrix
- (Can also represent as a 4×4 matrix - OpenGL does something like this)

Perspective Projection

- How does scaling the projection matrix change the transformation?

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)} \\
& {\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x \\
-d y \\
z
\end{array}\right] \Rightarrow\left(-d \frac{x}{z}, \quad-d \frac{y}{z}\right)}
\end{aligned}
$$

Orthographic projection

- Special case of perspective projection
- Distance from the COP to the PP is infinite

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Variants of orthographic projection

- Scaled orthographic
- Also called "weak perspective"

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1 / d
\end{array}\right] \Rightarrow(d x, d y)
$$

- Affine projection
- Also called "paraperspective"

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Dimensionality Reduction Machine (3D to 2D)

Point of observation

2D image

What have we lost?

- Angles
- Distances (lengths)

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines (collinearity is preserved)
- But line through focal point projects to a point
- Planes \rightarrow planes (or half-planes)
- But plane through focal point projects to line

Projection properties

- Parallel lines converge at a vanishing point
- Each direction in space has its own vanishing point
- But parallels parallel to the image plane remain parallel

