CS4670: Computer Vision Noah Snavely

Lecture 10: Cameras

Source: S. Lazebnik

Reading

• Szeliski 2.1.3-2.1.6

Announcements

- Project 2a: extended to Wednesday, October 6, at 8:59pm
 - Dominant orientation: you can either compute the maximum eigenvector, or the smoothed gradient (as in the MOPs paper)
 - Scale-space detection not required
 - You can use any OpenCV routine that duplicates what you did for P1 (cvSmooth, cvSobel, cvFilter)
 - Black Harris images: you may need to multiply the image by some large constant to see the Harris values

- Back to linear regression
- How do we generate a hypothesis?

- Back to linear regression
- How do we generate a hypothesis?

- General version:
 - 1. Randomly choose *s* samples
 - Typically s = minimum sample size that lets you fit a model
 - 2. Fit a model (e.g., line) to those samples
 - 3. Count the number of inliers that approximately fit the model
 - 4. Repeat *N* times
 - 5. Choose the model that has the largest set of inliers

How many rounds?

- If we have to choose *s* samples each time
 - with an outlier ratio e
 - and we want the right answer with probability p

	proportion of outliers <i>e</i>							
S	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

How big is s?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left[\left. s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3} ight]$	4	angles $+ \cdots$	\diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC pros and cons

• Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
 - Parameters to tune
 - Sometimes too many iterations are required
 - Can fail for extremely low inlier ratios
 - We can often do better than brute-force sampling

Final step: least squares fit

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins

- There are many other types of voting schemes
 - E.g., Hough transforms...

Hough transform

Panoramas

- Now we know how to create panoramas!
- Given two images:
 - Step 1: Detect features
 - Step 2: Match features
 - Step 3: Compute a homography using RANSAC
 - Step 4: Combine the images together (somehow)
- What if we have more than two images?

Can we use homographies to create a 360 panorama?

 In order to figure this out, we need to learn what a camera is

360 panorama

Questions?

Image formation

- Let's design a camera
 - Idea 1: put a piece of film in front of an object
 - Do we get a reasonable image?

Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the **aperture**
 - How does this transform the image?

Camera Obscura

Gemma Frisius, 1558

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Camera Obscura

Home-made pinhole camera

http://www.debevec.org/Pinhole/

Slide by A. Efros

Pinhole photography

Justin Quinnell, The Clifton Suspension Bridge. December 17th 2007 - June 21st 2008 6-month exposure

Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - *Diffraction* effects...

Shrinking the aperture

0.15 mm

0.07 mm

Adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
 - Changing the shape of the lens changes this distance