CS4670: Computer Vision

Noah Snavely

Lecture 10: Robust fitting

Announcements

- Quiz on Friday
- Project 2a due Monday
- Prelim?

Least squares: translations

$$
\left.\begin{array}{cc}
{\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\vdots \\
1 & 0 \\
0 & 1
\end{array}\right]} \\
\underset{\frac{\mathbf{A}}{2 n \times 2}}{\mathbf{A}} & \underset{2 \times 1}{x_{t}} \\
y_{t}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime}-x_{1} \\
y_{1}^{\prime}-y_{1} \\
x_{2}^{\prime}-x_{2} \\
y_{2}^{\prime}-y_{2} \\
\vdots \\
x_{n}^{\prime}-x_{n} \\
y_{n}^{\prime}-y_{n}
\end{array}\right]
$$

Least squares

$$
\mathbf{A t}=\mathbf{b}
$$

- Find \mathbf{t} that minimizes

$$
\|\mathbf{A} \mathbf{t}-\mathbf{b}\|^{2}
$$

- To solve, form the normal equations

$$
\begin{gathered}
\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{t}=\mathbf{A}^{\mathrm{T}} \mathbf{b} \\
\mathbf{t}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{gathered}
$$

Least squares: affine transformations

- Matrix form

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
& & \vdots & & \\
& & & & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{n} & y_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime} \\
y_{n}^{\prime}
\end{array}\right]} \\
& \underset{240}{\mathbf{A}} \\
& \mathbf{t}_{\mathrm{t}}^{\mathbf{t}}=\mathbf{b}
\end{aligned}
$$

Least squares: generalized linear regression

Linear regression

$\operatorname{Cost}(m, b)=\sum_{i=1}^{n}\left|y_{i}-\left(m x_{i}+b\right)\right|^{2}$

Linear regression

$\left[\begin{array}{cc}x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \\ x_{n} & 1\end{array}\right]\left[\begin{array}{c}m \\ b\end{array}\right]=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$

Homographies

To unwarp (rectify) an image

- solve for homography \mathbf{H} given \mathbf{p} and \mathbf{p}^{\prime}
- solve equations of the form: wp' = Hp
- linear in unknowns: w and coefficients of \mathbf{H}
- H is defined up to an arbitrary scale factor
- how many points are necessary to solve for \mathbf{H} ?

Solving for homographies

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right] \cong\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]} \\
& x_{i}^{\prime}=\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
& y_{i}^{\prime}=\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}}
\end{aligned}
$$

$x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{00} x_{i}+h_{01} y_{i}+h_{02}$
$y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{10} x_{i}+h_{11} y_{i}+h_{12}$

Solving for homographies

$$
\begin{aligned}
x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{00} x_{i}+h_{01} y_{i}+h_{02} \\
y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{10} x_{i}+h_{11} y_{i}+h_{12}
\end{aligned}
$$

$$
\left[\begin{array}{ccccccccc}
x_{i} & y_{i} & 1 & 0 & 0 & 0 & -x_{i}^{\prime} x_{i} & -x_{i}^{\prime} y_{i} & -x_{i}^{\prime} \\
0 & 0 & 0 & x_{i} & y_{i} & 1 & -y_{i}^{\prime} x_{i} & -y_{i}^{\prime} y_{i} & -y_{i}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Solving for homographies

Defines a least squares problem: minimize $\|\mathrm{Ah}-0\|^{2}$

- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Solution: $\hat{\mathbf{h}}=$ eigenvector of $\mathbf{A}^{T} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Questions?

Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B
2. Match features between A and B
3. Compute homography between A and B using least squares on set of matches

What could go wrong?

Outliers

outliers

Robustness

- Let's consider a simpler example...

Problem: Fit a line to these datapoints

Least squares fit

- How can we fix this?

Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
- "Agree" = within a small distance of the line
- I.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers

Counting inliers

Inliers: 3

Counting inliers

How do we find the best line?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
- Try out many lines, keep the best one
- Which lines?

Translations

RAndom SAmple Consensus

RAndom SAmple Consensus

RAndom SAmple Consensus

RANSAC

- Idea:
- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are < 50\% outliers
- "All good matches are alike; every bad match is bad in its own way."
- Tolstoy via Alyosha Efros

RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99\% probability
- How many rounds do we need?

RANSAC

RANSAC

- Back to linear regression
- How do we generate a hypothesis?

RANSAC

- Back to linear regression
- How do we generate a hypothesis?

RANSAC

- General version:

1. Randomly choose s samples

- Typically $s=$ minimum sample size that lets you fit a model

2. Fit a model (e.g., line) to those samples
3. Count the number of inliers that approximately fit the model
4. Repeat N times
5. Choose the model that has the largest set of inliers

How many rounds?

- If we have to choose s samples each time
- with an outlier ratio e
- and we want the right answer with probability p

proportion of outliers e								
s	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

How big is s ?

- For alignment, depends on the motion model
- Here, each sample is a correspondence (pair of matching points)

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\checkmark
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\checkmark
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

RANSAC pros and cons

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

Final step: least squares fit

RANSAC

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes
- E.g., Hough transforms...

Hough transform

