CS4670: Computer Vision
Noah Snavely

Lecture 9: Image alignment
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Reading

e Szeliski: Chapter 6.1



All 2D Linear Transformations

Linear transformations are combinations of ...

— Scale, '

— Rotation, X _ a bjx
— Shear, and y' c djy
— Mirror

Properties of linear transformations:
— Origin maps to origin

— Lines map to lines

— Parallel lines remain parallel

— Ratios are preserved

— Closed under composition
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Affine Transformations

e Affine transformations are combinations of ...

— Linear transformations, and w1 Ta b clx
— Translations y'|=|d e tly
w| |0 0 1w

* Properties of affine transformations:
— Origin does not necessarily map to origin
— Lines map to lines
— Parallel lines remain parallel
— Ratios are preserved
— Closed under composition




Projective Transformations aka
Homographies aka Planar Perspective Maps

a b c
H=|d e f
9 h 1

Called a homography
(or planar perspective map)




Homographies

a b c
= | d e f

g h 1
What happens when

the denominator is 0?
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Homographies

* Example on board
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Image warping with homographies

Image plane in front

black area
where no pixel
maps to




Homographies




Homographies

e Homographies ... T
— Affine transformations, and

— Projective warps - -

o Q.

* Properties of projective transformations:

— Origin does not necessarily map to origin

— Lines map to lines

— Parallel lines do not necessarily remain parallel

— Ratios are not preserved
— Closed under composition
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2D image transformations

.1: /;ml’lllﬁ Q Pr O]ettl\ e
translation
/“'7

Euclidean aﬂ]_ue >
N~ X
Name Matrix #D.O.F. | Preserves: Icon
translation [ I ‘ t ]2 ; 2 orientation + - - -
o
rigid (Euclidean) [ R ‘ t ]2 ; 3 lengths + - - - O
oy
similarity [ sR ‘ t ]2 ; 4 angles + - - - O
9y
affine [ A ]ng 6 parallelism + - - - E
projective [ H ]3 ; 8 straight lines D
I K.

These transformations are a nested set of groups
e Closed under composition and inverse is a member



Questions?



Image Warping

* Given a coordinate xform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute an
xformed image g(x’,y’) = f(T(x,y))?




Forward Warping

e Send each pixel f(x) to its corresponding
location (x’,y’) = T(x,y) in g(x’,y’)

e What if pixel lands “between” two pixels?




Forward Warping

e Send each pixel f(x,y) to its corresponding
location x” = h(x,y) in g(x,y’)

e What if pixel lands “between” two pixels?

e Answer: add “contribution” to several pixels,
normalize later (splatting)

e Can stil

result in holes
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Inverse Warping

* Get each pixel g(x,y’) from its corresponding
location (x,y) = T(x,y) in f(x,y)
e Requires taking the inverse of the transform
e What if pixel comes from “between” two pixels?




Inverse Warping

* Get each pixel g(x’) from its corresponding
location x” = h(x) in f(x)
e What if pixel comes from “between” two pixels?

e Answer: resample color value from interpolated
(prefiltered) source image
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Interpolation

* Possible interpolation filters:
— nearest neighbor
— bilinear
— bicubic (interpolating)
— sinc

* Needed to prevent “jaggies”
and “texture crawl”

(with prefiltering)




Computing transformations

* Given a set of matches between images A and B

— How can we compute the transform T from A to B?
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— Find transform T that best “agrees” with the matches



Computing transformations




Simple case: translations

How do we solve for
(Xt7 Yt) ?




Simple case: translations

(x7,¥1)




Another view

(x7,¥1)

(x1,¥1)
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X, + Xy = X

Yi T Yt
e System of linear equations

— What are the knowns? Unknowns?

|
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— How many unknowns? How many equations (per match)?



Another view

(x7,¥1)
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Problem: more equations than unknowns

— “Overdetermined” system of equations
— We will find the least squares solution




Least squares formulation

* For each point (x;, ;)

Xg ~

Y-

- Yt

= X

e we define the residuals as

x; (Xﬁ)

Tyi (Yt)

7
(xi +x¢t) — X;
(yi +y:) -y,



Least squares formulation

* Goal: minimize sum of squared residuals
n

C(Xt,yt) = Z (""x@- (Xt)2 Py (Yt)z)

1=1

e “Least squares” solution
* For translations, is equal to mean displacement



Least squares formulation

* Can also write as a matrix equation

1 0 Ty —
0 1 Y1 — 1
1 0 ToH — To
0 1 Tl — | Y2~y
: Yt :
1 0 T — Ty
_ 0 1 i _ y%'_'yn i

A t= Db

2n X2 2x1 2nx1



Least squares

At=Db

e Find t that minimizes

|At — b||*
* To solve, form the normal equations
A"At=A"b
—1
t=(A"A) A'b



Questions?



Affine transformations
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How many unknowns?
How many equations per match?

How many matches do we need?



Affine transformations

e Residuals:

re,(a,b,c.d e f) = (aw; +by; +c) —
Iy, (CL, b? C, d? €, f) — (dJZ'@ T €Y; T f) — y;

e Cost function:

C(a,b,c,d,e, f) =

T

Z (r2, (a, b, c.d, e, ) +r, (abc.d.e. f)2)

1=1



Affine transformations

e Matrix form

C a1 oy 10 0 0 ° - T
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