
Lecture 9: Image alignment

CS4670: Computer Vision
Noah Snavely

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

Reading

• Szeliski: Chapter 6.1

All 2D Linear Transformations

• Linear transformations are combinations of …
– Scale,

– Rotation,

– Shear, and

– Mirror

• Properties of linear transformations:
– Origin maps to origin

– Lines map to lines

– Parallel lines remain parallel

– Ratios are preserved

– Closed under composition



























y

x

dc

ba

y

x

'

'































y
x

lk

ji

hg

fe
dc
ba

y
x
'
'

Affine Transformations

• Affine transformations are combinations of …
– Linear transformations, and

– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines remain parallel

– Ratios are preserved

– Closed under composition












































w

y
x

fed
cba

w

y
x

100

'
'

Projective Transformations aka
Homographies aka Planar Perspective Maps

Called a homography
(or planar perspective map)

Homographies

What happens when
the denominator is 0?

Homographies

• Example on board

Points at infinity

Image warping with homographies

image plane in front image plane below

black area

where no pixel

maps to

Homographies

Homographies

• Homographies …

– Affine transformations, and

– Projective warps

• Properties of projective transformations:

– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines do not necessarily remain parallel

– Ratios are not preserved

– Closed under composition

2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member

Questions?

Image Warping

• Given a coordinate xform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute an
xformed image g(x’,y’) = f(T(x,y))?

f(x,y) g(x’,y’)
x x’

T(x,y)
y y’

Forward Warping

• Send each pixel f(x) to its corresponding
location (x’,y’) = T(x,y) in g(x’,y’)

f(x,y) g(x’,y’)
x x’

T(x,y)

• What if pixel lands “between” two pixels?

y y’

Forward Warping

• Send each pixel f(x,y) to its corresponding
location x’ = h(x,y) in g(x’,y’)

f(x,y) g(x’,y’)
x x’

T(x,y)

• What if pixel lands “between” two pixels?

• Answer: add “contribution” to several pixels,
normalize later (splatting)

• Can still result in holes

y y’

Inverse Warping

• Get each pixel g(x’,y’) from its corresponding
location (x,y) = T-1(x,y) in f(x,y)

f(x,y) g(x’,y’)
x x’

T-1(x,y)

• Requires taking the inverse of the transform

• What if pixel comes from “between” two pixels?

y y’

Inverse Warping

• Get each pixel g(x’) from its corresponding
location x’ = h(x) in f(x)

• What if pixel comes from “between” two pixels?

• Answer: resample color value from interpolated
(prefiltered) source image

f(x,y) g(x’,y’)
x x’

y y’
T-1(x,y)

Interpolation

• Possible interpolation filters:

– nearest neighbor

– bilinear

– bicubic (interpolating)

– sinc

• Needed to prevent “jaggies”
and “texture crawl”

(with prefiltering)

Computing transformations

• Given a set of matches between images A and B

– How can we compute the transform T from A to B?

– Find transform T that best “agrees” with the matches

Computing transformations

?

Simple case: translations

How do we solve for
?

Mean displacement =

Simple case: translations

Displacement of match i =

Another view

• System of linear equations
– What are the knowns? Unknowns?

– How many unknowns? How many equations (per match)?

Another view

• Problem: more equations than unknowns
– “Overdetermined” system of equations

– We will find the least squares solution

Least squares formulation

• For each point

• we define the residuals as

Least squares formulation

• Goal: minimize sum of squared residuals

• “Least squares” solution

• For translations, is equal to mean displacement

Least squares formulation

• Can also write as a matrix equation

2n x 2 2 x 1 2n x 1

Least squares

• Find t that minimizes

• To solve, form the normal equations

Questions?

Affine transformations

• How many unknowns?

• How many equations per match?

• How many matches do we need?

Affine transformations

• Residuals:

• Cost function:

Affine transformations

• Matrix form

2n x 6 6 x 1 2n x 1

