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Reading

• Szeliski: Chapter 6.1



All 2D Linear Transformations

• Linear transformations are combinations of …
– Scale,

– Rotation,

– Shear, and

– Mirror

• Properties of linear transformations:
– Origin maps to origin

– Lines map to lines

– Parallel lines remain parallel

– Ratios are preserved

– Closed under composition
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Affine Transformations

• Affine transformations are combinations of …
– Linear transformations, and

– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines remain parallel

– Ratios are preserved

– Closed under composition
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Projective Transformations aka 
Homographies aka Planar Perspective Maps

Called a homography
(or planar perspective map)



Homographies

What happens when 
the denominator is 0?



Homographies

• Example on board



Points at infinity



Image warping with homographies

image plane in front image plane below

black area

where no pixel

maps to



Homographies



Homographies

• Homographies …

– Affine transformations, and

– Projective warps

• Properties of projective transformations:

– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines do not necessarily remain parallel

– Ratios are not preserved

– Closed under composition



2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member



Questions?



Image Warping

• Given a coordinate xform (x’,y’) = T(x,y) and a 
source image f(x,y), how do we compute an 
xformed image g(x’,y’) = f(T(x,y))?

f(x,y) g(x’,y’)
x x’

T(x,y)
y y’



Forward Warping

• Send each pixel f(x) to its corresponding 
location (x’,y’) = T(x,y) in g(x’,y’)

f(x,y) g(x’,y’)
x x’

T(x,y)

• What if pixel lands “between” two pixels?

y y’



Forward Warping

• Send each pixel f(x,y) to its corresponding 
location x’ = h(x,y) in g(x’,y’)

f(x,y) g(x’,y’)
x x’

T(x,y)

• What if pixel lands “between” two pixels?

• Answer: add “contribution” to several pixels, 
normalize later (splatting)

• Can still result in holes

y y’



Inverse Warping

• Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x,y) in f(x,y)

f(x,y) g(x’,y’)
x x’

T-1(x,y)

• Requires taking the inverse of the transform

• What if pixel comes from “between” two pixels?

y y’



Inverse Warping

• Get each pixel g(x’) from its corresponding 
location x’ = h(x) in f(x)

• What if pixel comes from “between” two pixels?

• Answer: resample color value from interpolated
(prefiltered) source image

f(x,y) g(x’,y’)
x x’

y y’
T-1(x,y)



Interpolation

• Possible interpolation filters:

– nearest neighbor

– bilinear

– bicubic (interpolating)

– sinc

• Needed to prevent “jaggies”
and “texture crawl” 

(with prefiltering)



Computing transformations

• Given a set of matches between images A and B

– How can we compute the transform T from A to B?

– Find transform T that best “agrees” with the matches



Computing transformations

?



Simple case: translations

How do we solve for
? 



Mean displacement = 

Simple case: translations

Displacement of match i =



Another view

• System of linear equations
– What are the knowns?  Unknowns?

– How many unknowns?  How many equations (per match)?



Another view

• Problem: more equations than unknowns
– “Overdetermined” system of equations

– We will find the least squares solution



Least squares formulation

• For each point

• we define the residuals as 



Least squares formulation

• Goal: minimize sum of squared residuals

• “Least squares” solution

• For translations, is equal to mean displacement



Least squares formulation

• Can also write as a matrix equation

2n x 2 2 x 1 2n x 1



Least squares

• Find t that minimizes 

• To solve, form the normal equations



Questions?



Affine transformations

• How many unknowns?

• How many equations per match?

• How many matches do we need?



Affine transformations

• Residuals:

• Cost function:



Affine transformations

• Matrix form

2n x 6 6 x 1 2n x 1


