CS4670: Computer Vision
Noah Snavely

Lecture 9: Image alignment

RE T S
L1 ;\ ; & pE
W YN
~ " PR
i LY
!
-
-

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

Reading

e Szeliski: Chapter 6.1

All 2D Linear Transformations

Linear transformations are combinations of ...

— Scale, '

— Rotation, X _ a bjx
— Shear, and y' c djy
— Mirror

Properties of linear transformations:
— Origin maps to origin

— Lines map to lines

— Parallel lines remain parallel

— Ratios are preserved

— Closed under composition

KRB L

Affine Transformations

e Affine transformations are combinations of ...

— Linear transformations, and w1 Ta b clx
— Translations y'|=|d e tly
w| |0 0 1w

* Properties of affine transformations:
— Origin does not necessarily map to origin
— Lines map to lines
— Parallel lines remain parallel
— Ratios are preserved
— Closed under composition

Projective Transformations aka
Homographies aka Planar Perspective Maps

a b c
H=|d e f
9 h 1

Called a homography
(or planar perspective map)

Homographies

a b c
= | d e f

g h 1
What happens when

the denominator is 0?

T
Yy
1

g
dx-

gx-

Homographies

* Example on board

——————————’

Po

——————————’

nts at infinity

Image warping with homographies

Image plane in front

black area
where no pixel
maps to

Homographies

Homographies

e Homographies ... T
— Affine transformations, and

— Projective warps - -

o Q.

* Properties of projective transformations:

— Origin does not necessarily map to origin

— Lines map to lines

— Parallel lines do not necessarily remain parallel

— Ratios are not preserved
— Closed under composition

> o

= S~ O

2D image transformations

.1: /;ml’lllﬁ Q Pr O]ettl\ e
translation
/“'7

Euclidean aﬂ]_ue >
N~ X
Name Matrix #D.O.F. | Preserves: Icon
translation [I ‘ t]2 ; 2 orientation + - - -
o
rigid (Euclidean) [R ‘ t]2 ; 3 lengths + - - - O
oy
similarity [sR ‘ t]2 ; 4 angles + - - - O
9y
affine [A]ng 6 parallelism + - - - E
projective [H]3 ; 8 straight lines D
I K.

These transformations are a nested set of groups
e Closed under composition and inverse is a member

Questions?

Image Warping

* Given a coordinate xform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute an
xformed image g(x’,y’) = f(T(x,y))?

Forward Warping

e Send each pixel f(x) to its corresponding
location (x’,y’) = T(x,y) in g(x’,y’)

e What if pixel lands “between” two pixels?

Forward Warping

e Send each pixel f(x,y) to its corresponding
location x” = h(x,y) in g(x,y’)

e What if pixel lands “between” two pixels?

e Answer: add “contribution” to several pixels,
normalize later (splatting)

e Can stil

result in holes

y

_— Tan

L.

X

L.

fxy) gy

Inverse Warping

* Get each pixel g(x,y’) from its corresponding
location (x,y) = T(x,y) in f(x,y)
e Requires taking the inverse of the transform
e What if pixel comes from “between” two pixels?

Inverse Warping

* Get each pixel g(x’) from its corresponding
location x” = h(x) in f(x)
e What if pixel comes from “between” two pixels?

e Answer: resample color value from interpolated
(prefiltered) source image

R

fix,y) alx,y’)

Interpolation

* Possible interpolation filters:
— nearest neighbor
— bilinear
— bicubic (interpolating)
— sinc

* Needed to prevent “jaggies”
and “texture crawl”

(with prefiltering)

Computing transformations

* Given a set of matches between images A and B

— How can we compute the transform T from A to B?

MAKIN 4 O
>
STORYTELUNG 75 OF COM GA. PHIC NO' . '-:‘ b »3 ’
o ; L - AN
& 3) X A\:\\‘g\
=" l‘"\'"sxé‘;l-\ 2 e \\\\
A1, [=9 S
T\ \r_: /"\'» = ”:)\ & 7 f
0 l ® |)
2 - - &
- = =
S g S —
S e b4 3
=\ == i =
'!'—’ =
= N a5

— Find transform T that best “agrees” with the matches

Computing transformations

Simple case: translations

How do we solve for
(Xt7 Yt) ?

Simple case: translations

(x7,¥1)

Another view

(x7,¥1)

(x1,¥1)

_ —
X2; y2) | “““MW i W

| -
=t Amnmuw e

.---<n,yn)_ = == T

X, + Xy = X

Yi T Yt
e System of linear equations

— What are the knowns? Unknowns?

|
S

— How many unknowns? How many equations (per match)?

Another view

(x7,¥1)

S
<
ct+

|

Problem: more equations than unknowns

— “Overdetermined” system of equations
— We will find the least squares solution

Least squares formulation

* For each point (x;, ;)

Xg ~

Y-

- Yt

= X

e we define the residuals as

x; (Xﬁ)

Tyi (Yt)

7
(xi +x¢t) — X;
(yi +y:) -y,

Least squares formulation

* Goal: minimize sum of squared residuals
n

C(Xt,yt) = Z (""x@- (Xt)2 Py (Yt)z)

1=1

e “Least squares” solution
* For translations, is equal to mean displacement

Least squares formulation

* Can also write as a matrix equation

1 0 Ty —
0 1 Y1 — 1
1 0 ToH — To
0 1 Tl — | Y2~y
: Yt :
1 0 T — Ty
_ 0 1 i _ y%'_'yn i

A t= Db

2n X2 2x1 2nx1

Least squares

At=Db

e Find t that minimizes

|At — b||*
* To solve, form the normal equations
A"At=A"b
—1
t=(A"A) A'b

Questions?

Affine transformations

C
/ Y
1 1

 —
-
-

How many unknowns?
How many equations per match?

How many matches do we need?

Affine transformations

e Residuals:

re,(a,b,c.d e f) = (aw; +by; +c) —
Iy, (CL, b? C, d? €, f) — (dJZ'@ T €Y; T f) — y;

e Cost function:

C(a,b,c,d,e, f) =

T

Z (r2, (a, b, c.d, e,) +r, (abc.d.e. f)2)

1=1

Affine transformations

e Matrix form

C a1 oy 10 0 0 ° - T
0 0 0 21 wy1 1 L 4
a
2 y2 1 0 0 O b rh
0 0 0 X9 Yo 1 C o yé
g =
e
Ty Yo 1 0 0 0| - I
L0 0 0 x, yn 1._ |

2nx 6 6x1 2n X

