CS4670: Computer Vision Noah Snavely

Lecture 6: Feature matching and alignment

Reading

• Szeliski: Chapter 6.1

Last time: Corners and blobs

Scale-space blob detector: Example

Feature descriptors

We know how to detect good points Next question: **How to match them?**

Answer: Come up with a *descriptor* for each point, find similar descriptors between the two images

How to achieve invariance

Need both of the following:

- 1. Make sure your detector is invariant
- 2. Design an invariant feature descriptor
 - Simplest descriptor: a single 0
 - What's this invariant to?
 - Next simplest descriptor: a square window of pixels
 - What's this invariant to?
 - Let's look at some better approaches...

Rotation invariance for feature descriptors

- Find dominant orientation of the image patch
 - This is given by ${\bf x}_{max}$, the eigenvector of ${\bf H}$ corresponding to λ_{max} (the larger eigenvalue)
 - Rotate the patch according to this angle

Figure by Matthew Brown

Multiscale Oriented PatcheS descriptor

Take 40x40 square window around detected feature

- Scale to 1/5 size (using prefiltering)
- Rotate to horizontal
- Sample 8x8 square window centered at feature
- Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the window

Detections at multiple scales

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The boxes show the feature orientation and the region from which the descriptor vector is sampled.

Scale Invariant Feature Transform

Basic idea:

- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient 90°) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations

SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Properties of SIFT

Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available
 - <u>http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT</u>

SIFT Example

sift

868 SIFT features

Feature matching

Given a feature in I₁, how to find the best match in I₂?

- Define distance function that compares two descriptors
- 2. Test all the features in I_2 , find the one with min distance

Feature distance

How to define the difference between two features f_1, f_2 ?

- Simple approach: L₂ distance, ||f₁ f₂ ||
- can give good scores to ambiguous (incorrect) matches

12

Feature distance

How to define the difference between two features f_1, f_2 ?

- Better approach: ratio distance = $||f_1 f_2|| / ||f_1 f_2'||$
 - f_2 is best SSD match to f_1 in I_2
 - f_2' is 2nd best SSD match to f_1 in I_2
 - gives large values for ambiguous matches

12

Feature matching example

51 matches

Feature matching example

58 matches

Evaluating the results

How can we measure the performance of a feature matcher?

feature distance

True/false positives

How can we measure the performance of a feature matcher?

feature distance

The distance threshold affects performance

- True positives = # of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
- False positives = # of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?

Evaluating the results

How can we measure the performance of a feature matcher?

Evaluating the results

How can we measure the performance of a feature matcher?

Lots of applications

Features are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking
- Object recognition (e.g., Google Goggles)
- Indexing and database retrieval
- Robot navigation
- ... other

Object recognition (David Lowe)

3D Reconstruction

Internet Photos ("Colosseum")

Reconstructed 3D cameras and points

Sony Aibo

SIFT usage:

- Recognize charging station
- Communicate with visual cards
- Teach object recognition

AIBO® Entertainment Robot

Official U.S. Resources and Online Destinations

Questions?

Image alignment

Image taken from same viewpoint, just rotated.

Can we line them up?

Image alignment

Why don't these image line up exactly?

What is the geometric relationship between these two images?

