
Lecture 6: Feature matching and alignment

CS4670: Computer Vision
Noah Snavely

Reading

• Szeliski: Chapter 6.1

Last time: Corners and blobs

Scale-space blob detector: Example

Feature descriptors
We know how to detect good points
Next question: How to match them?

Answer: Come up with a descriptor for each point,
find similar descriptors between the two images

?

How to achieve invariance

Need both of the following:

1. Make sure your detector is invariant

2. Design an invariant feature descriptor

– Simplest descriptor: a single 0
• What’s this invariant to?

– Next simplest descriptor: a square window of pixels
• What’s this invariant to?

– Let’s look at some better approaches…

• Find dominant orientation of the image patch

– This is given by xmax, the eigenvector of H corresponding to max (the
larger eigenvalue)

– Rotate the patch according to this angle

Rotation invariance for
feature descriptors

Figure by Matthew Brown

Take 40x40 square window
around detected feature

– Scale to 1/5 size (using
prefiltering)

– Rotate to horizontal

– Sample 8x8 square window
centered at feature

– Intensity normalize the
window by subtracting the
mean, dividing by the
standard deviation in the
window

CSE 576: Computer Vision

Multiscale Oriented PatcheS descriptor

8 pixels

Adapted from slide by Matthew Brown

Detections at multiple scales

Basic idea:

• Take 16x16 square window around detected feature

• Compute edge orientation (angle of the gradient - 90) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2

angle histogram

SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

– Can handle significant changes in illumination

• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

SIFT Example

sift

868 SIFT features

Feature matching

Given a feature in I1, how to find the best match
in I2?

1. Define distance function that compares two
descriptors

2. Test all the features in I2, find the one with min
distance

Feature distance

How to define the difference between two features f1, f2?

– Simple approach: L2 distance, ||f1 - f2 ||

– can give good scores to ambiguous (incorrect) matches

I1 I2

f1 f2

f1 f2f2
'

Feature distance

How to define the difference between two features f1, f2?
• Better approach: ratio distance = ||f1 - f2 || / || f1 - f2’ ||

• f2 is best SSD match to f1 in I2

• f2’ is 2nd best SSD match to f1 in I2

• gives large values for ambiguous matches

I1 I2

Feature matching example

51 matches

Feature matching example

58 matches

Evaluating the results

How can we measure the performance of a feature matcher?

50

75

200

feature distance

True/false positives

The distance threshold affects performance
– True positives = # of detected matches that are correct

• Suppose we want to maximize these—how to choose threshold?

– False positives = # of detected matches that are incorrect
• Suppose we want to minimize these—how to choose threshold?

50

75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

0.7

Evaluating the results

0 1

1

false positive rate

true

positive

rate

true positives

matching features (positives)

0.1

How can we measure the performance of a feature matcher?

“recall”

false positives

unmatched features (negatives)

1 - “precision”

0.7

Evaluating the results

0 1

1

false positive rate

true

positive

rate

true positives

matching features (positives)

0.1

false positives

unmatched features (negatives)

ROC curve (“Receiver Operator Characteristic”)

How can we measure the performance of a feature matcher?

“recall”

1 - “precision”

Lots of applications

Features are used for:

– Image alignment (e.g., mosaics)

– 3D reconstruction

– Motion tracking

– Object recognition (e.g., Google Goggles)

– Indexing and database retrieval

– Robot navigation

– … other

Object recognition (David Lowe)

3D Reconstruction

Internet Photos (“Colosseum”) Reconstructed 3D cameras and points

Sony Aibo

SIFT usage:

Recognize
charging
station

Communicate
with visual
cards

Teach object
recognition

Questions?

Image alignment

Image taken from same viewpoint, just rotated.

Can we line them up?

Image alignment

Why don’t these image line up exactly?

What is the geometric relationship
between these two images?

?

