CS4670: Computer Vision Noah Snavely

Lecture 2: Convolution and edge detection

NOGLAR

From Sandlot Science

Gaussian Kernel

Mean vs. Gaussian filtering

Gaussian filters

Gaussian filter

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian

– Convolving two times with Gaussian kernel of width σ = convolving once with kernel of width $\sigma\sqrt{2}$

Sharpening

before

after

Sharpening revisited

• What does blurring take away?

Let's add it back:

Source: S. Lazebnik

Sharpen filter

Sharpen filter

Convolution in the real world

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html

Questions?

Image noise

Original image F[x, y]

White Gaussian noise $F[x,y] + \mathcal{N}(0,\sigma)$

Salt and pepper noise (each pixel has some chance of being switched to zero or one)

http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/index.html

Gaussian noise

 $F[x, y] + \mathcal{N}(0, 5\%)$

 σ = 1 pixel

 σ = 2 pixels

 σ = 5 pixels

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Salt & pepper noise – Gaussian blur

p = 10%

 σ = 1 pixel σ = 2 pixels

 σ = 5 pixels

• What's wrong with the results?

Alternative idea: Median filtering

• A **median filter** operates over a window by selecting the median intensity in the window

• Is median filtering linear?

Median filter

• What advantage does median filtering have over Gaussian filtering?

filters have width 5 :

Salt & pepper noise – median filtering

p = 10%

 σ = 1 pixel

 σ = 2 pixels

 σ = 5 pixels

3x3 window

5x5 window

7x7 window

Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Origin of Edges

• Edges are caused by a variety of factors

Characterizing edges

 An edge is a place of rapid change in the image intensity function

Image derivatives

- How can we differentiate a *digital* image F[x,y]?
 - Option 1: reconstruct a continuous image, *f*, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?

Image gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Image gradient

Effects of noise

Where is the edge?

Source: S. Seitz

Solution: smooth first

Source: S. Seitz

Associative property of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f * h) = f * \frac{d}{dx}h$
- This saves us one operation:

2D edge detection filters

derivative of Gaussian (x)

Gaussian $h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}}$

Derivative of Gaussian filter

The Sobel operator

Common approximation of derivative of Gaussian

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term **is** needed to get the right gradient value