Problem 1: [Tracing rays through uniform spatial subdivisions]

Consider the problem of tracing a ray through a uniform 3D spatial subdivision, and iterating over
the ordered list of intersected cells. Assume that the subdivision is axis aligned, that cells are cubical
of length h, and that the array dimensions are $N_x \times N_y \times N_z$. Denote the 3D ray by $r(t) = e + dt$,
where $e = (e_x, e_y, e_z)$ and $d = (d_x, d_y, d_z)$.

One approach for determining the next intersected cell is to evaluate t values for all axis-aligned
slabs of each axis (see figure) and then determining whether the next t value is from an x, y, or z
slab, and then intersecting the corresponding cell.

Instead of computing all values at once, an incremental DDA-type algorithm is preferrable in prac-
tice. In this problem, you will state concisely an efficient incremental algorithm to iterate over
cells pierced by the advancing ray by effectively determining which of the x, y, or z dimensions
has the smallest t value. Assume that you can output a intersected cells by issuing the command
output(i,j,k).

Similar to efficient DDA rasterizers, your algorithm should only require simple addition and com-
parison operations in the inner loop. State your initial setup operations, assuming that the first
boundary cell the ray hits is (i_0, j_0, k_0)—here indices are 0-based and run from $0, \ldots, N - 1$—at
position e and $t = 0$ for simplicity.

Problem 2: [Rasterization]

Rational linear interpolation (RLI) is used to interpolate texture coordinates in screen space without
the artifacts introduced by linear interpolation of (u, v) values in screen space [Heckbert and More-
ton 1991; http://citeseer.ist.psu.edu/36582.html]. Describe the screen space val-
ues obtained if RLI were used to interpolate (x, y, z) values in screen space (Hint: consider the case
where the texture coordinates are spatial coordinates). Clearly state and compare how the RLI z
value differs from the screen-space depth value z' used in the Z buffer algorithm. Why not use RLI
z values for the Z buffer algorithm?