User Interaction

CS 465 lecture 21

Bad Computer Interfaces
(more on this later)

User Interaction

• Input devices
• User-centered design
• GUIs and GUI design
• Interaction with 2D and 3D scenes

Input devices

• Discrete events
 – Keyboard
 – Function keys
 – Mouse buttons
 – Game controller buttons
 • Including multi-way controllers (pseudo-joysticks)

• Valuators: generate continuous values
 – Rotary knobs (relative or absolute)
 • Recentering or free
 – Joysticks (two valuators in one)
Input devices

• Locators: give a continuous 2D position
 – Mechanical mouse (trackball is the same)
 • Two axes with optical encoders
 – Integrate rate of pulses on each axis
 – Result = position
 – Optical mouse
 • Image sensor looking out the bottom
 – Shift and correlate to estimate motion per frame
 – Integrate motion to get position
 – Mouse velocity scaling

Input devices

• Locators, cont.
 – Pen tablet
 • Directly senses absolute stylus position
 • Often used directly over a display
 – PDA
 – Tablet PC
 – Absolute vs. relative
 – Direct vs. indirect

Input devices

• Multidimensional controllers
 – More exotic devices
 – Spaceball
 – Data glove
 – 3D tracker
 • Magnetic
 • Acoustic
 • Optical

User-centered design

• Usability is an often undervalued objective in the design of devices
• Computers and computerized devices are some of the worst offenders!
• This section based heavily on the classic book by Donald Norman, *The Design of Everyday Things*
User-centered design

• We are often frustrated by the artifacts we build to work for us
 – door handles, water faucets, …
 – stereos, microwaves, …
 – airplanes, industrial equipment, …
 – computers (always!)
• …and we blame ourselves
 – I’m so dumb, I always push the pull door
 – I would need an engineering degree to figure this thing out!
 – The accident was caused by pilot error
• If we work at it, we can avoid many of these problems!

Psychopathology of everyday things

• (Norman’s phrase)
• Sometimes the interaction between a device and human behavior defeats the device’s purpose
• Best explored by examples

Doors: push or pull?
Ovens

- Two devices with the same basic function
 - one computer controlled, one not
 - one universally hated UI, one perfectly functional

Concepts of user-centered design

- Affordances
 - objects indicate by their appearance how they can be used
- Mappings
 - when several controls, directions, etc. exist, which is which?
- Conceptual models
 - don’t mislead the user about what is inside
- Visibility and feedback
 - let the user see what is going on
- Knowledge in the head vs. in the world
 - well-chosen cues help the user remember what to do
- Conventions
 - when all else fails, make the user memorize once

Cameras

Affordances

- Which turn, which slide, which push?
Affordances

• The big jog/shuttle knob has some hidden meanings...

Mappings

• Which control is for which burner?

Mappings

• Lighting controls: which switch controls what light(s)?
 – what lights are even being controlled? Which operate independently?
Mappings

- Which way do you turn?

Conceptual models

- Norman’s example: refrigerator adjustments
 - appearance: separate controls for fridge and freezer
 - reality: one cooling system, one thermostat (second control is for cold air distribution)
- My example: Microsoft word 1989 vs 2006
 - version 4: paragraph attributes associated with "paragraph mark"
 - this did lead to some surprising behavior
 - version 2004: same underlying model, but layers of "helpful" behaviors prevent users from discovering it

Visibility and feedback

- Buttons that light up when they are on can reveal state
 - and with a nice built-in mapping back to the control
- Faucet handles again...

Knowledge in the world

- Brief, well-designed markings
Standardization

- The QWERTY keyboard
 - cost to transition to a mildly better system is high
- Complex designs that are not new are not as hard

Graphical User Interfaces (GUIs)

- Using visual display coupled with pointing to present complex choices to the user
- The dominant mode of user interface today
- Many flavors exist, but all present similar widgets
 - Icons (objects)
 - Buttons (actions)
 - Menus (collections of choices/actions)
 - Lists
 - Trees
- All the same principles apply as for physical UIs
 - only you have to create everything: affordances, visible state, etc. don’t happen naturally.

Affordances

- Pressing
 - often suggested by raised appearance

- Sliding, adjustment
 - often suggested by track

- Active vs. inactive

Lack of affordance

- Web links (often)
 - how do I know what I can click on?

- Window controls
 - I can grab this window anywhere to move it. How do I know this?
Mapping

- Scroll bars: horizontal and vertical
- Software often has very arbitrary mappings

Other features

- Feedback
 - during control operation
 - revealing control state
- Conceptual models
 - a higher level question…
- Knowledge in the world
 - drop-down menus are a nice example
 - contrast to keyboard commands that you have to just know

Basic interaction tasks

- Positioning
- Selection
 - From large/continuous set (part of image)
 - Rectangle, lasso
 - From unorganized discrete set (icons on desktop)
 - Click and modifier-click, or drag area
 - From linearly organized set
 - Selection from list box
 - From hierarchically organized set
 - Drop-down menus, trees, columnar lists, …

3 Hierarchy UIs