Lighting II

CS 465 Lecture 19

Cornell CS465 Fall 2007 • Lecture 19

© 2007 Doug James & Steve Marschner • 1

Specular reflection

- Smooth surfaces of pure materials have ideal specular reflection (said this before)
 - Metals (conductors) and dielectrics (insulators) behave differently
- Reflectance (fraction of light reflected) depends on angle

Cornell CS465 Fall 2007 • Lecture 19

© 2007 Doug James & Steve Marschner • 2

Refraction at boundary of media

Cornell CS465 Fall 2007 • Lecture 19

© 2007 Doug James & Steve Marschner • 3

Snell's Law

• Tells us where the refracted ray goes

 $\eta_1 \sin \theta_1 = \eta_2 \sin \theta_2$

Cornell CS465 Fall 2007 • Lecture 19

© 2007 Doug James & Steve Marschner • 4

Ray tracing dielectrics

- Like a simple mirror surface, use recursive ray tracing
- But we need two rays
 - One reflects off the surface (same as mirror ray)
 - The other crosses the surface (computed using Snell's law)
 - Doesn't always exist (total internal reflection)
- Splitting into two rays, recursively, creates a ray tree
 - Very many rays are traced per viewing ray
 - Ways to prune the tree
 - · Limit on ray depth
 - · Limit on ray attenuation

Cornell CS465 Fall 2007 • Lecture 19

© 2007 Doug James & Steve Marschner • 5

Specular reflection from glass/water • Dependence on Glass angle is dramatic! - about 4% at 0.9 normal incidence - always 100% at 0.7 grazing 9.0 0.6 remaining light is transmitted This is important for proper appearance Angle from normal Cornell CS465 Fall 2007 • Lecture 19 © 2007 Doug James & Steve Marschner • 7

Fresnel's formulas

- They predict how much light reflects from a smooth interface between two materials
 - usually one material is empty space

$$F_p = \frac{\eta_2 \cos \theta_1 - \eta_1 \cos \theta_2}{\eta_2 \cos \theta_1 + \eta_1 \cos \theta_2}$$

$$F_s = \frac{\eta_1 \cos \theta_1 - \eta_2 \cos \theta_2}{\eta_1 \cos \theta_1 + \eta_2 \cos \theta_2}$$

$$R = \frac{1}{2} \left(F_p^2 + F_s^2 \right)$$

- R is the fraction that is reflected
- -(1-R) is the fraction that is transmitted

Cornell CS465 Fall 2007 • Lecture 19

© 2007 Doug James & Steve Marschner • 9

Schlick's approximation

• For graphics, a quick hack to get close with less computation:

$$\tilde{R} = R_0 + (1 - R_0)(1 - \cos \theta)^5$$

• R_0 is easy to compute:

$$F_p = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$

$$F_s = \frac{\eta_1 - \eta_2}{\eta_1 + \eta_2}$$

$$R_0 = \left(\frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}\right)^2$$

Cornell CS465 Fall 2007 • Lecture 19

© 2007 Doug James & Steve Marschner • 10

Basic ray tracing

- Many advanced methods build on the basic ray tracing paradigm
- · Basic ray tracer: one sample for everything
 - one ray per pixel
 - one shadow ray for every point light
 - one reflection ray, possibly one refraction ray, per intersection

Cornell CS417 Spring 2003 • Lecture 40

© 2003 Steve Marschner • 14

Discontinuities in basic RT

- Perfectly sharp object silhouettes in image
 - leads to aliasing problems (stair steps)
- Perfectly sharp shadow edges
 - everything looks like it's in direct sun
- Perfectly clear mirror reflections
 - reflective surfaces are all highly polished
- Perfect focus at all distances
 - camera always has an infinitely tiny aperture
- Perfectly frozen instant in time (in animation)
 - motion is frozen as if by strobe light

Cornell CS417 Spring 2003 • Lecture 40

© 2003 Steve Marschner • 15

Creating soft shadows

- For area lights: use many shadow rays
 - and each shadow ray gets a different point on the light
- Choosing samples
 - general principle: start with uniform in square

Cornell CS417 Spring 2003 • Lecture 40

© 2003 Steve Marschner • 29

Creating glossy reflections

- Jitter the reflected rays
 - Not exactly in mirror direction; add a random offset
 - Can work out math to match Phong exactly
 - Can do this by jittering the normal if you want

Cornell CS417 Spring 2003 • Lecture 40

© 2003 Steve Marschner • 30

Depth of field

- Make eye rays start at random points on aperture
 - always going toward a point on the focus plane

© 2003 Steve Marschner • 31

Motion blur

- Caused by finite shutter times
 - strobing without blur
- Introduce time as a variable throughout the system
 - object are hit by rays according to their position at a given time
- Then generate rays with times distributed over shutter interval

Cornell CS417 Spring 2003 • Lecture 40

© 2003 Steve Marschner • 32

Generating samples

- A complicated question in general
- Basic idea: start with random points in a square
- Monte Carlo methods—CS 667

Cornell CS417 Spring 2003 • Lecture 40

© 2003 Steve Marschner • 33